255 research outputs found

    Elastic Properties in Tension and Shear of High Strength Nonferrous Metals and Stainless Steel - Effect of Previous Deformation and Heat Treatment

    Get PDF
    A resume is given of an investigation of the influence of plastic deformation and of annealing temperature on the tensile and shear elastic properties of high strength nonferrous metals and stainless steels in the form of rods and tubes. The data were obtained from earlier technical reports and notes, and from unpublished work in this investigation. There are also included data obtained from published and unpublished work performed on an independent investigation. The rod materials, namely, nickel, monel, inconel, copper, 13:2 Cr-Ni steel, and 18:8 Cr-Ni steel, were tested in tension; 18:8 Cr-Ni steel tubes were tested in shear, and nickel, monel, aluminum-monel, and Inconel tubes were tested in both tension and shear. There are first described experiments on the relationship between hysteresis and creep, as obtained with repeated cyclic stressing of annealed stainless steel specimens over a constant load range. These tests, which preceded the measurements of elastic properties, assisted in devising the loading time schedule used in such measurements. From corrected stress-set curves are derived the five proof stresses used as indices of elastic or yield strength. From corrected stress-strain curves are derived the secant modulus and its variation with stress. The relationship between the forms of the stress-set and stress-strain curves and the values of the properties derived is discussed. Curves of variation of proof stress and modulus with prior extension, as obtained with single rod specimens, consist in wavelike basic curves with superposed oscillations due to differences of rest interval and extension spacing; the effects of these differences are studied. Oscillations of proof stress and modulus are generally opposite in manner. The use of a series of tubular specimens corresponding to different amounts of prior extension of cold reduction gave curves almost devoid of oscillation since the effects of variation of rest interval and extension spacing were removed. Comparison is also obtained between the variation of the several properties, as measured in tension and in shear. The rise of proof stress with extension is studied, and the work-hardening rates of the various metals evaluated. The ratio between the tensile and shear proof stresses for the various annealed and cold-worked tubular metals is likewise calculated. The influence of annealing or tempering temperature on the proof stresses and moduli for the cold-worked metals and for air-hardened 13:2 Cr-Ni steel is investigated. An improvement of elastic strength generally is obtained, without important loss of yield strength, by annealing at suitable temperature. The variation of the proof stress and modulus of elasticity with plastic deformation or annealing temperature is explained in terms of the relative dominance of three important factors: namely, (a) internal stress, (b) lattice-expansion or work-hardening, and (c) crystal reorientation. Effective values of Poisson's ratio were computed from tensile and shear moduli obtained on tubular specimens. The variation of Poisson's ratio with plastic deformation and annealing temperature is explained in terms of the degree of anisotropy produced by changes of (a) internal stress and (b) crystal orientation

    Novel conopeptides of the I-superfamily occur in several clades of cone snails

    Get PDF
    The I-superfamily of conotoxins represents a new class of peptides in the venom of some Conus species. These toxins are characterized by four disulfide bridges and inhibit or modify ion channels of nerve cells. When testing venoms from 11 Conus species for a functional characterization, blocking activity on potassium channels (like Kv1.1 and Kv1.3 channels, but not Kv1.2 channels) was detected in the venom of Conus capitaneus, Conus miles, Conus vexillum and Conus virgo. Analysis at the cDNA level of these venoms using primers designed according to the amino acid sequence of a potassium channel blocking toxin (ViTx) from C. virgo confirmed the presence of structurally homologous peptides in these venoms. Moreover, peptides belonging to the I-superfamily, but with divergent amino acid sequences, were found in Conus striatus and Conus imperialis. In all cases, the sequences of the precursors' prepro-regions exhibited high conservation, whereas the sequences of the mature peptides ranged from almost identical to highly divergent between species. We then performed phylogenetic analyses of new and published mitochondrial 16S rDNA sequences representing 104 haplotypes from these and numerous other Conus species, using Bayesian, maximum-likelihood, maximum-parsimony and neighbor-joining methods of inference. Cone snails known to possess I-superfamily toxins were assigned to five different major clades in all of the resulting gene trees. Moreover, I-superfamily conopeptides were detected both in vermivorous and piscivorous species of Conus, thus demonstrating the widespread presence of such toxins in this speciose genus beyond evolutionary and ecological groups

    Primary structure and electrophysiological characterization of two almost identical isoforms of toxin from Isometrus vittatus (family: Buthidae) scorpion venom.

    Get PDF
    Two almost identical proteins with 70 amino acid residues each, closely packed by four disufide bridges, and molecular masses of 7899.5 and 7884.7 were isolated and sequenced from the venom of the scorpion Isometrus vittatus from Pakistan. They differ by an acidic amino acid residue (glutamic or aspartic) at the same position 55 of the peptide chain, however, they exhibit the same length, the same charge and are undistinguishable when separated by C(18) reverse phase HPLC. The mixture of the two proteins called IsomTx1 depolarizes the cockroach isolated axon; artificial repolarization is followed by sustained repetitive activity, artificial hyperpolarization facilitates bursting activity observed as an answer to rapid depolarization to -60 mV. The depolarization is antagonized by TTX. In voltage-clamp experiments IsomTx1 increases axonal sodium permeability which has a particular importance between resting and threshold potentials and moderately slows down the fast inactivation. These characteristics closely resemble those of other anti-insect scorpion toxins classified as contractive toxins from Androctonus and Buthotus venoms

    Spectroscopic Properties of a Biologically Relevant [Fe2(Ī¼-O)2] Diamond Core Motif with a Short Iron-Iron Distance

    Get PDF
    Diiron cofactors in enzymes perform diverse challenging transformations. The structures of high valent intermediates (Q in methane monooxygenase and X in ribonucleotide reductase) are debated since Feāˆ’Fe distances of 2.5ā€“3.4ā€…Ć… were attributed to ā€œopenā€ or ā€œclosedā€ cores with bridging or terminal oxido groups. We report the crystallographic and spectroscopic characterization of a FeIII2(Ī¼-O)2 complex (2) with tetrahedral (4C) centres and short Feāˆ’Fe distance (2.52ā€…Ć…), persisting in organic solutions. 2 shows a large Fe K-pre-edge intensity, which is caused by the pronounced asymmetry at the TD FeIII centres due to the short Feāˆ’Ī¼āˆ’O bonds. A ā‰ˆ2.5ā€…Ć… Feāˆ’Fe distance is unlikely for six-coordinate sites in Q or X, but for a Fe2(Ī¼-O)2 core containing four-coordinate (or by possible extension five-coordinate) iron centres there may be enough flexibility to accommodate a particularly short Feāˆ’Fe separation with intense pre-edge transition. This finding may broaden the scope of models considered for the structure of high-valent diiron intermediates formed upon O2 activation in biology

    Operando tracking of oxidation-state changes by coupling electrochemistry with time-resolved X-ray absorption spectroscopy demonstrated for water oxidation by a cobalt-based catalyst film

    Get PDF
    Transition metal oxides are promising electrocatalysts for water oxidation, i.e., the oxygen evolution reaction (OER), which is critical in electrochemical production of non-fossil fuels. The involvement of oxidation state changes of the metal in OER electrocatalysis is increasingly recognized in the literature. Tracing these oxidation states under operation conditions could provide relevant information for performance optimization and development of durable catalysts, but further methodical developments are needed. Here, we propose a strategy to use single-energy X-ray absorption spectroscopy for monitoring metal oxidation-state changes during OER operation with millisecond time resolution. The procedure to obtain time-resolved oxidation state values, using two calibration curves, is explained in detail. We demonstrate the significance of this approach as well as possible sources of data misinterpretation. We conclude that the combination of X-ray absorption spectroscopy with electrochemical techniques allows us to investigate the kinetics of redox transitions and to distinguish the catalytic current from the redox current. Tracking of the oxidation state changes of Co ions in electrodeposited oxide films during cyclic voltammetry in neutral pH electrolyte serves as a proof of principle
    • ā€¦
    corecore