60 research outputs found

    The Structural and Functional Capacity of Ruminal and Cecal Microbiota in Growing Cattle Was Unaffected by Dietary Supplementation of Linseed Oil and Nitrate

    Get PDF
    peer-reviewedMicroorganisms in the digestive tract of ruminants differ in their functionality and ability to use feed constituents. While cecal microbiota play an important role in post-rumen fermentation of residual substrates undigested in the rumen, limited knowledge exists regarding its structure and function. In this trial we investigated the effect of dietary supplementation with linseed oil and nitrate on methane emissions and on the structure of ruminal and cecal microbiota of growing bulls. Animals were allocated to either a CTL (control) or LINNIT (CTL supplemented with 1.9% linseed and 1.0% nitrates) diet. Methane emissions were measured using the GreenFeed system. Microbial diversity was assessed using amplicon sequencing of microbial genomic DNA. Additionally, total RNA was extracted from ruminal contents and functional mcrA and mtt genes were targeted in amplicon sequencing approach to explore the diversity of functional gene expression in methanogens. LINNIT had no effect on methane yield (g/kg DMI) even though it decreased methane production by 9% (g/day; P < 0.05). Methanobrevibacter- and Methanomassiliicoccaceae-related OTUs were more abundant in cecum (72 and 24%) compared to rumen (60 and 11%) irrespective of the diet (P < 0.05). Feeding LINNIT reduced the relative abundance of Methanomassiliicoccaceae mcrA cDNA reads in the rumen. Principal component analysis revealed significant differences in taxonomic composition and abundance of bacterial communities between rumen and cecum. Treatment decreased the relative abundance of a few Ruminococcaceae genera, without affecting global bacterial community structure. Our research confirms a high level of heterogeneity in species composition of microbial consortia in the main gastrointestinal compartments where feed is fermented in ruminants. There was a parallel between the lack of effect of LINNIT on ruminal and cecal microbial community structure and functions on one side and methane emission changes on the other. These results suggest that the sequencing strategy used here to study microbial diversity and function accurately reflected the absence of effect on methane phenotypes in bulls treated with linseed plus nitrate.This experiment is a part of a large collaborative project led by INRA granted by 11 companies: Adisseo France SAS, Agrial, Apis Gene, Deltavit, DSM Nutritional Products AG, Institut de l'Elevage, Lallemand, Moy Park Beef Orléans, Neovia, Techna France Nutrition, Valorex. This project aims to reduce enteric methane emission by nutrition. MP was the recipient of a PHC Ulysses travel scholarship to Ireland, provided by the French ministry of Foreign Affairs and International Development (Ministères des Affaires Etrangères et du Développement International, MAEDI) and the ministry of National Education, Higher Education, and Research (Ministère de l'Education Nationale, de l'Enseignement Supérieur et de la Recherche, MENESR). EM was the recipient of a FACCE-JPI scholarship

    Dietary nitrate supplementation does not alter exercise efficiency at high altitude – further results from the Xtreme Alps study

    Get PDF
    Introduction: Nitrate supplementation in the form of beetroot juice (BRJ) ingestion has been shown to improve exercise tolerance during acute hypoxia, but its effect on exercise physiology remains unstudied during sustained terrestrial high altitude exposure. We hypothesized that performing exercise at high altitude would lower circulating nitrate and nitrite levels and that BRJ ingestion would reverse this phenomenon while concomitantly improving key determinants of aerobic exercise performance. Methods: Twenty seven healthy volunteers (21 male) underwent a series of exercise tests at sea level (SL, London, 75 m) and again after 5-8 days at high altitude (HA, Capanna Regina Margherita or "Margherita Hut," 4,559 m). Using a double-blind protocol, participants were randomized to consume a beetroot/fruit juice beverage (three doses per day) with high levels of nitrate (∼0.18 mmol/kg/day) or a nitrate-depleted placebo (∼11.5 μmoles/kg/day) control drink, from 3 days prior to the exercise trials until completion. Submaximal constant work rate cycle tests were performed to determine exercise efficiency and a maximal incremental ramp exercise test was undertaken to measure aerobic capacity, using breath-by-breath pulmonary gas exchange measurements throughout. Concentrations of nitrate, nitrite and nitrosation products were quantified in plasma samples collected at 5 timepoints during the constant work rate tests. Linear mixed modeling was used to analyze data. Results: At both SL and HA, plasma nitrate concentrations were elevated in the nitrate supplementation group compared to placebo (P < 0.001) but did not change throughout increasing exercise work rate. Delta exercise efficiency was not altered by altitude exposure (P = 0.072) or nitrate supplementation (P = 0.836). V̇O2peak decreased by 24% at high altitude (P < 0.001) and was lower in the nitrate-supplemented group at both sea level and high altitude compared to placebo (P = 0.041). Dietary nitrate supplementation did not alter other peak exercise variables or oxygen consumption at anaerobic threshold. Circulating nitrite and S-nitrosothiol levels unexpectedly rose in a few individuals right after cessation of exercise at high altitude. Conclusion: Whilst regularly consumed during an 8 days expedition to terrestrial high altitude, nitrate supplementation did not alter exercise efficiency and other exercise physiological variables, except decreasing V̇O2peak. These results and those of others question the practical utility of BRJ consumption during prolonged altitude exposure

    Caudwell Xtreme Everest: A prospective study of the effects of environmental hypoxia on cognitive functioning.

    Get PDF
    BACKGROUND: The neuropsychological consequences of exposure to environmental hypobaric hypoxia (EHH) remain unclear. We thus investigated them in a large group of healthy volunteers who trekked to Mount Everest base camp (5,300 m). METHODS: A neuropsychological (NP) test battery assessing memory, language, attention, and executive function was administered to 198 participants (age 44.5±13.7 years; 60% male). These were studied at baseline (sea level), 3,500 m (Namche Bazaar), 5,300 m (Everest Base Camp) and on return to 1,300 m (Kathmandu) (attrition rate 23.7%). A comparable control group (n = 25; age 44.5±14.1 years; 60% male) for comparison with trekkers was tested at/or near sea level over an equivalent timeframe so as to account for learning effects associated with repeat testing. The Reliable Change Index (RCI) was used to calculate changes in cognition and neuropsychological function during and after exposure to EHH relative to controls. RESULTS: Overall, attention, verbal ability and executive function declined in those exposed to EHH when the performance of the control group was taken into account (RCI .05 to -.95) with decline persisting at descent. Memory and psychomotor function showed decline at highest ascent only (RCI -.08 to -.56). However, there was inter-individual variability in response: whilst NP performance declined in most, this improved in some trekkers. Cognitive decline was greater amongst older people (r = .42; p < .0001), but was otherwise not consistently associated with socio-demographic, mood, or physiological variables. CONCLUSIONS: After correcting for learning effects, attention, verbal abilities and executive functioning declined with exposure to EHH. There was considerable individual variability in the response of brain function to sustained hypoxia with some participants not showing any effects of hypoxia. This might have implications for those facing sustained hypoxia as a result of any disease

    Recent Advances in Enteric Methane Mitigation and the Long Road to Sustainable Ruminant Production

    Get PDF
    Mitigation of methane emission, a potent greenhouse gas, is a worldwide priority to limit global warming. A substantial part of anthropogenic methane is emitted by the livestock sector, as methane is a normal product of ruminant digestion. We present the latest developments and challenges ahead of the main efficient mitigation strategies of enteric methane production in ruminants. Numerous mitigation strategies have been developed in the last decades, from dietary manipulation and breeding to targeting of methanogens, the microbes that produce methane. The most recent advances focus on specific inhibition of key enzymes involved in methanogenesis. But these inhibitors, although efficient, are not affordable and not adapted to the extensive farming systems prevalent in low- and middle-income countries. Effective global mitigation of methane emissions from livestock should be based not only on scientific progress but also on the feasibility and accessibility of mitigation strategies.We apologize for not being able to cite many excellent studies due to space limitations. We acknowledge the support by the EU Horizon 2020 research and innovation program under grant agreements 818368 (MASTER) and 101000213 (HoloRuminant). Y.R.-C. was financially supported by a Ramon y Cajal contract (RYC2019-027244-I) from the Spanish Ministry of Science and Innovation. Julien Marcetteau is credited for the graphic design of Figure 1.info:eu-repo/semantics/acceptedVersio

    Drums.

    No full text
    score (7 p.) 32 cm

    Systemic oxygen extraction during exercise at high altitude

    No full text
    BackgroundClassic teaching suggests that diminished availability of oxygen leads to increased tissue oxygen extraction yet evidence to support this notion in the context of hypoxaemia, as opposed to anaemia or cardiac failure, is limited.MethodsAt 75 m above sea level, and after 7–8 days of acclimatization to 4559 m, systemic oxygen extraction [C(a?v)O2] was calculated in five participants at rest and at peak exercise. Absolute [C(a?v)O2] was calculated by subtracting central venous oxygen content (CcvO2) from arterial oxygen content (CaO2) in blood sampled from central venous and peripheral arterial catheters, respectively. Oxygen uptake (V.O2) was determined from expired gas analysis during exercise.ResultsAscent to altitude resulted in significant hypoxaemia; median (range) SpO2 87.1 (82.5–90.7)% and PaO2 6.6 (5.7–6.8) kPa. While absolute C(a?v)O2 was reduced at maximum exercise at 4559 m [83.9 (67.5–120.9) ml litre?1 vs 99.6 (88.0–151.3) ml litre?1 at 75 m, P=0.043], there was no change in oxygen extraction ratio (OER) [C(a?v)O2/CaO2] between the two altitudes [0.52 (0.48–0.71) at 4559 m and 0.53 (0.49–0.73) at 75 m, P=0.500]. Comparison of C(a?v)O2 at peak V.O2 at 4559 m and the equivalent V.O2 at sea level for each participant also revealed no significant difference [83.9 (67.5–120.9) ml litre1 vs 81.2 (73.0–120.7) ml litre?1, respectively, P=0.225].Conclusion In acclimatized individuals at 4559 m, there was a decline in maximum absolute C(a?v)O2 during exercise but no alteration in OER calculated using central venous oxygen measurements. This suggests that oxygen extraction may have become limited after exposure to 7–8 days of hypoxaemia

    The Structural and Functional Capacity of Ruminal and Cecal Microbiota in Growing Cattle Was Unaffected by Dietary Supplementation of Linseed Oil and Nitrate

    No full text
    Microorganisms in the digestive tract of ruminants differ in their functionality and ability to use feed constituents. While cecal microbiota play an important role in post-rumen fermentation of residual substrates undigested in the rumen, limited knowledge exists regarding its structure and function. In this trial we investigated the effect of dietary supplementation with linseed oil and nitrate on methane emissions and on the structure of ruminal and cecal microbiota of growing bulls. Animals were allocated to either a CTL (control) or LINNIT (CTL supplemented with 1.9% linseed and 1.0% nitrates) diet. Methane emissions were measured using the GreenFeed system. Microbial diversity was assessed using amplicon sequencing of microbial genomic DNA. Additionally, total RNA was extracted from ruminal contents and functional mcrA and mtt genes were targeted in amplicon sequencing approach to explore the diversity of functional gene expression in methanogens. LINNIT had no effect on methane yield (g/kg DMI) even though it decreased methane production by 9% (g/day; P < 0.05). Methanobrevibacter- and Methanomassiliicoccaceae-related OTUs were more abundant in cecum (72 and 24%) compared to rumen (60 and 11%) irrespective of the diet (P < 0.05). Feeding LINNIT reduced the relative abundance of Methanomassiliicoccaceae mcrA cDNA reads in the rumen. Principal component analysis revealed significant differences in taxonomic composition and abundance of bacterial communities between rumen and cecum. Treatment decreased the relative abundance of a few Ruminococcaceae genera, without affecting global bacterial community structure. Our research confirms a high level of heterogeneity in species composition of microbial consortia in the main gastrointestinal compartments where feed is fermented in ruminants. There was a parallel between the lack of effect of LINNIT on ruminal and cecal microbial community structure and functions on one side and methane emission changes on the other. These results suggest that the sequencing strategy used here to study microbial diversity and function accurately reflected the absence of effect on methane phenotypes in bulls treated with linseed plus nitrate.This experiment is a part of a large collaborative project led by INRA granted by 11 companies: Adisseo France SAS, Agrial, Apis Gene, Deltavit, DSM Nutritional Products AG, Institut de l’Elevage, Lallemand, Moy Park Beef Orléans, Neovia, Techna France Nutrition, Valorex. This project aims to reduce enteric methane emission by nutrition. MP was the recipient of a PHC Ulysses travel scholarship to Ireland, provided by the French ministry of Foreign Affairs and International Development (Ministères des Affaires Etrangères et du Développement International, MAEDI) and the ministry of National Education, Higher Education, and Research (Ministère de l’Education Nationale, de l’Enseignement Supérieur et de la Recherche, MENESR). EM was the recipient of a FACCE-JPI scholarship

    Weaning age influences the severity of gastrointestinal microbiome shifts in dairy calves

    No full text
    Ruminants microbial consortium is responsible for ruminal fermentation, a process which converts fibrous feeds unsuitable for human consumption into desirable dairy and meat products, begins to establish soon after birth. However, it undergoes a significant transition when digestion shifts from the lower intestine to ruminal fermentation. We hypothesised that delaying the transition from a high milk diet to an exclusively solid food diet (weaning) would lessen the severity of changes in the gastrointestinal microbiome during this transition. beta-diversity of ruminal and faecal microbiota shifted rapidly in early-weaned calves (6 weeks), whereas, a more gradual shift was observed in late-weaned calves (8 weeks) up to weaning. Bacteroidetes and Firmicutes were the most abundant ruminal phyla in pre- and post-weaned calves, respectively. Yet, the relative abundance of these phyla remained stable in faeces (P >= 0.391). Inferred gene families assigned to KEGG pathways revealed an increase in ruminal carbohydrate metabolism (P <= 0.009) at 9, compared to 5 weeks. Conversely, carbohydrate metabolism in faeces declined (P <= 0.002) following a change in weaning status (i.e., the shift from pre- to post-weaning). Our results indicate weaning later facilitates a more gradual shift in microbiota and could potentially explain the negative effects of early-weaning associated with feeding a high-plane of pre-weaning nutrition
    corecore