156 research outputs found

    Asymmetry and the Nucleosynthetic Signature of Nearly Edge-Lit Detonation in White Dwarf Cores

    Get PDF
    Most of the leading explosion scenarios for Type Ia supernovae involve the nuclear incineration of a white dwarf star through a detonation wave. Several scenarios have been proposed as to how this detonation may actually occur, but the exact mechanism and environment in which it takes place remain unknown. We explore the effects of an off-center initiated detonation on the spatial distribution of the nucleosynthetic yield products in a toy model -- a pre-expanded near Chandrasekhar-mass white dwarf. We find that a single-point near edge-lit detonation results in asymmetries in the density and thermal profiles, notably the expansion timescale, throughout the supernova ejecta. We demonstrate that this asymmetry of the thermodynamic trajectories should be common to off-center detonations where a small amount of the star is burned prior to detonation. The sensitivity of the yields on the expansion timescale results in an asymmetric distribution of the elements synthesized as reaction products. We tabulate the shift in the center of mass of the various elements produced in our model supernova and find an odd-even pattern for elements past silicon. Our calculations show that off-center single-point detonations in carbon-oxygen white dwarfs are marked by significant composition asymmetries in their remnants which bear potentially observable signatures in both velocity and coordinate space, including an elemental nickel mass fraction which varies by a factor of two to three from one side of the remnant to the other.Comment: 7 pages, 7 figures, accepted for publication in the Astrophysical Journa

    Initiation of the detonation in the gravitationally confined detonation model of Type Ia supernovae

    Full text link
    We study the initiation of the detonation in the gravitationally confined detonation (GCD) model of Type Ia supernovae (SNe Ia). Initiation of the detonation occurs spontaneously in a region where the length scale of the temperature gradient extending from a flow (in which carbon burning is already occurring) into unburned fuel is commensurate to the range of critical length scales which have been derived from 1D simulations that resolve the initiation of a detonation. By increasing the maximum resolution in a truncated cone that encompasses this region, beginning somewhat before initiation of the detonation occurs, we successfully simulate in situ the first gradient-initiated detonation in a whole-star simulation. The detonation emerges when a compression wave overruns a pocket of fuel situated in a Kelvin-Helmholtz cusp at the leading edge of the inwardly directed jet of burning carbon. The compression wave pre-conditions the temperature in the fuel in such a way that the Zel'dovich gradient mechanism can operate and a detonation ensues. We explore the dependence of the length scale of the temperature gradient on spatial resolution and discuss the implications for the robustness of this detonation mechanism. We find that the time and the location at which initiation of the detonation occurs varies with resolution. In particular, initiation of a detonation had not yet occurred in our highest resolution simulation by the time we ended the simulation because of the computational demand it required. We suggest that the turbulent shear layer surrounding the inwardly directed jet provides the most favorable physical conditions, and therefore the most likely location, for initiation of a detonation in the GCD model.Comment: 28 pages, 12 figures, 1 table, accepted to Ap

    Hastings-Levitov aggregation in the small-particle limit

    Get PDF
    We establish some scaling limits for a model of planar aggregation. The model is described by the composition of a sequence of independent and identically distributed random conformal maps, each corresponding to the addition of one particle. We study the limit of small particle size and rapid aggregation. The process of growing clusters converges, in the sense of Caratheodory, to an inflating disc. A more refined analysis reveals, within the cluster, a tree structure of branching fingers, whose radial component increases deterministically with time. The arguments of any finite sample of fingers, tracked inwards, perform coalescing Brownian motions. The arguments of any finite sample of gaps between the fingers, tracked outwards, also perform coalescing Brownian motions. These properties are closely related to the evolution of harmonic measure on the boundary of the cluster, which is shown to converge to the Brownian web

    Spontaneous Initiation of Detonations in White Dwarf Environments: Determination of Critical Sizes

    Full text link
    Some explosion models for Type Ia supernovae (SN Ia), such as the gravitationally confined detonation (GCD) or the double detonation sub-Chandrasekhar (DDSC) models, rely on the spontaneous initiation of a detonation in the degenerate C/O material of a white dwarf. The length scales pertinent to the initiation of the detonation are notoriously unresolved in multi-dimensional stellar simulations, prompting the use of results of 1D simulations at higher resolution, such as the ones performed for this work, as guidelines for deciding whether or not conditions reached in the higher dimensional full star simulations successfully would lead to the onset of a detonation. Spontaneous initiation relies on the existence of a suitable gradient in self-ignition (induction) times of the fuel, which we set up with a spatially localized non-uniformity of temperature -- a hot spot. We determine the critical (smallest) sizes of such hot spots that still marginally result in a detonation in white dwarf matter by integrating the reactive Euler equations with the hydrodynamics code FLASH. We quantify the dependences of the critical sizes of such hot spots on composition, background temperature, peak temperature, geometry, and functional form of the temperature disturbance, many of which were hitherto largely unexplored in the literature. We discuss the implications of our results in the context of modeling of SNe Ia.Comment: 43 pages, 12 figures, 12 table

    Unravelling the mechanism of TrkA-induced cell death by macropinocytosis in medulloblastoma Daoy cells

    Get PDF
    Macropinocytosis is a normal cellular process by which cells internalize extracellular fluids and nutrients from their environment and is one strategy that Ras-transformed pancreatic cancer cells use to increase uptake of amino acids to meet the needs of rapid growth. Paradoxically, in non-Ras transformed medulloblastoma brain tumors, we have shown that expression and activation of the receptor tyrosine kinase TrkA overactivates macropinocytosis, resulting in the catastrophic disintegration of the cell membrane and in tumor cell death. The molecular basis of this uncontrolled form of macropinocytosis has not been previously understood. Here, we demonstrate that the overactivation of macropinocytosis is caused by the simultaneous activation of two TrkA-mediated pathways: (i) inhibition of RhoB via phosphorylation at Ser185 by casein kinase 1, which relieves actin stress fibers, and (ii) FRS2-scaffolded Src and H-Ras activation of RhoA, which stimulate actin reorganization and the formation of lamellipodia. Since catastrophic macropinocytosis results in brain tumor cell death, improved understanding of the mechanisms involved will facilitate future efforts to reprogram tumors, even those resistant to apoptosis, to die

    Comparative assessment of methods for short-term forecasts of COVID-19 hospital admissions in England at the local level.

    Get PDF
    BACKGROUND: Forecasting healthcare demand is essential in epidemic settings, both to inform situational awareness and facilitate resource planning. Ideally, forecasts should be robust across time and locations. During the COVID-19 pandemic in England, it is an ongoing concern that demand for hospital care for COVID-19 patients in England will exceed available resources. METHODS: We made weekly forecasts of daily COVID-19 hospital admissions for National Health Service (NHS) Trusts in England between August 2020 and April 2021 using three disease-agnostic forecasting models: a mean ensemble of autoregressive time series models, a linear regression model with 7-day-lagged local cases as a predictor, and a scaled convolution of local cases and a delay distribution. We compared their point and probabilistic accuracy to a mean-ensemble of them all and to a simple baseline model of no change from the last day of admissions. We measured predictive performance using the weighted interval score (WIS) and considered how this changed in different scenarios (the length of the predictive horizon, the date on which the forecast was made, and by location), as well as how much admissions forecasts improved when future cases were known. RESULTS: All models outperformed the baseline in the majority of scenarios. Forecasting accuracy varied by forecast date and location, depending on the trajectory of the outbreak, and all individual models had instances where they were the top- or bottom-ranked model. Forecasts produced by the mean-ensemble were both the most accurate and most consistently accurate forecasts amongst all the models considered. Forecasting accuracy was improved when using future observed, rather than forecast, cases, especially at longer forecast horizons. CONCLUSIONS: Assuming no change in current admissions is rarely better than including at least a trend. Using confirmed COVID-19 cases as a predictor can improve admissions forecasts in some scenarios, but this is variable and depends on the ability to make consistently good case forecasts. However, ensemble forecasts can make forecasts that make consistently more accurate forecasts across time and locations. Given minimal requirements on data and computation, our admissions forecasting ensemble could be used to anticipate healthcare needs in future epidemic or pandemic settings

    Quantitative blood flow measurement in rat brain with multiphase arterial spin labelling magnetic resonance imaging

    Get PDF
    Cerebral blood flow is an important parameter in many diseases and functional studies that can be accurately measured in humans using arterial spin labelling (ASL) MRI. However, although rat models are frequently used for preclinical studies of both human disease and brain function, rat CBF measurements show poor consistency between studies. This lack of reproducibility is due, partly, to the smaller size and differing head geometry of rats compared to humans, as well as the differing analysis methodologies employed and higher field strengths used for preclinical MRI. To address these issues, we have implemented, optimised and validated a multiphase pseudo-continuous ASL technique, which overcomes many of the limitations of rat CBF measurement. Three rat strains (Wistar, Sprague Dawley and Berlin Druckrey IX) were used, and CBF values validated against gold-standard autoradiography measurements. Label positioning was found to be optimal at 45°, while post-label delay was optimised to 0.55 s. Whole brain CBF measures were 109 ± 22, 111 ± 18 and 100 ± 15 mL/100 g/min by multiphase pCASL, and 108 ± 12, 116 ± 14 and 122 ± 16 mL/100 g/min by autoradiography in Wistar, SD and BDIX cohorts, respectively. Tumour model analysis shows that the developed methods also apply in disease states. Thus, optimised multiphase pCASL provides robust, reproducible and non-invasive measurement of CBF in rats

    Exploring surveillance data biases when estimating the reproduction number: with insights into subpopulation transmission of COVID-19 in England.

    Get PDF
    The time-varying reproduction number (Rt: the average number of secondary infections caused by each infected person) may be used to assess changes in transmission potential during an epidemic. While new infections are not usually observed directly, they can be estimated from data. However, data may be delayed and potentially biased. We investigated the sensitivity of Rt estimates to different data sources representing COVID-19 in England, and we explored how this sensitivity could track epidemic dynamics in population sub-groups. We sourced public data on test-positive cases, hospital admissions and deaths with confirmed COVID-19 in seven regions of England over March through August 2020. We estimated Rt using a model that mapped unobserved infections to each data source. We then compared differences in Rt with the demographic and social context of surveillance data over time. Our estimates of transmission potential varied for each data source, with the relative inconsistency of estimates varying across regions and over time. Rt estimates based on hospital admissions and deaths were more spatio-temporally synchronous than when compared to estimates from all test positives. We found these differences may be linked to biased representations of subpopulations in each data source. These included spatially clustered testing, and where outbreaks in hospitals, care homes, and young age groups reflected the link between age and severity of the disease. We highlight that policy makers could better target interventions by considering the source populations of Rt estimates. Further work should clarify the best way to combine and interpret Rt estimates from different data sources based on the desired use. This article is part of the theme issue 'Modelling that shaped the early COVID-19 pandemic response in the UK'
    • …
    corecore