32 research outputs found
Beyond the culture effect on credibility perception on microblogs
We investigated the credibility perception of tweet readers from the USA and by readers from eight Arabic countries; our aim was to understand if credibility was affected by country and/or by culture. Results from a crowd-sourcing experiment, showed a wide variety of factors affected credibility perception, including a tweet author's gender, profile image, username style, location, and social network overlap with the reader. We found that culture determines readers' credibility perception, but country has no effect. We discuss the implications of our findings for user interface design and social media systems
Different genes interact with particulate matter and tobacco smoke exposure in affecting lung function decline in the general population
BACKGROUND: Oxidative stress related genes modify the effects of ambient air pollution or tobacco smoking on lung function decline. The impact of interactions might be substantial, but previous studies mostly focused on main effects of single genes. OBJECTIVES: We studied the interaction of both exposures with a broad set of oxidative-stress related candidate genes and pathways on lung function decline and contrasted interactions between exposures. METHODS: For 12679 single nucleotide polymorphisms (SNPs), change in forced expiratory volume in one second (FEV(1)), FEV(1) over forced vital capacity (FEV(1)/FVC), and mean forced expiratory flow between 25 and 75% of the FVC (FEF(25-75)) was regressed on interval exposure to particulate matter >10 microm in diameter (PM10) or packyears smoked (a), additive SNP effects (b), and interaction terms between (a) and (b) in 669 adults with GWAS data. Interaction p-values for 152 genes and 14 pathways were calculated by the adaptive rank truncation product (ARTP) method, and compared between exposures. Interaction effect sizes were contrasted for the strongest SNPs of nominally significant genes (p(interaction)>0.05). Replication was attempted for SNPs with MAF<10% in 3320 SAPALDIA participants without GWAS. RESULTS: On the SNP-level, rs2035268 in gene SNCA accelerated FEV(1)/FVC decline by 3.8% (p(interaction) = 2.5x10(-6)), and rs12190800 in PARK2 attenuated FEV1 decline by 95.1 ml p(interaction) = 9.7x10(-8)) over 11 years, while interacting with PM10. Genes and pathways nominally interacting with PM10 and packyears exposure differed substantially. Gene CRISP2 presented a significant interaction with PM10 (p(interaction) = 3.0x10(-4)) on FEV(1)/FVC decline. Pathway interactions were weak. Replications for the strongest SNPs in PARK2 and CRISP2 were not successful. CONCLUSIONS: Consistent with a stratified response to increasing oxidative stress, different genes and pathways potentially mediate PM10 and tobac smoke effects on lung function decline. Ignoring environmental exposures would miss these patterns, but achieving sufficient sample size and comparability across study samples is challengin
Genome-Wide Interaction Analysis of Air Pollution Exposure and Childhood Asthma with Functional Follow-up
Rationale: The evidence supporting an association between traffic-related air pollution exposure and incident childhood asthma is inconsistent and may depend on genetic factors. Objectives: To identify gene–environment interaction effects on childhood asthma using genome-wide single-nucleotide polymorphism (SNP) data and air pollution exposure. Identified loci were further analyzed at epigenetic and transcriptomic levels. Methods: We used land use regression models to estimate individual air pollution exposure (represented by outdoor NO2 levels) at the birth address and performed a genome-wide interaction study for doctors’ diagnoses of asthma up to 8 years in three European birth cohorts (n = 1,534) with look-up for interaction in two separate North American cohorts, CHS (Children’s Health Study) and CAPPS/SAGE (Canadian Asthma Primary Prevention Study/Study of Asthma, Genetics and Environment) (n = 1,602 and 186 subjects, respectively). We assessed expression quantitative trait locus effects in human lung specimens and blood, as well as associations among air pollution exposure, methylation, and transcriptomic patterns. Measurements and Main Results: In the European cohorts, 186 SNPs had an interaction P < 1 × 10−4 and a look-up evaluation of these disclosed 8 SNPs in 4 loci, with an interaction P < 0.05 in the large CHS study, but not in CAPPS/SAGE. Three SNPs within adenylate cyclase 2 (ADCY2) showed the same direction of the interaction effect and were found to influence ADCY2 gene expression in peripheral blood (P = 4.50 × 10−4). One other SNP with P < 0.05 for interaction in CHS, rs686237, strongly influenced UDP-Gal:betaGlcNAc β-1,4-galactosyltransferase, polypeptide 5 (B4GALT5) expression in lung tissue (P = 1.18 × 10−17). Air pollution exposure was associated with differential discs, large homolog 2 (DLG2) methylation and expression. Conclusions: Our results indicated that gene–environment interactions are important for asthma development and provided supportive evidence for interaction with air pollution for ADCY2, B4GALT5, and DLG2
Gene expression profiles associated with cigarette smoking and moist snuff consumption
Arabidopsis response to the spider mite Tetranychus urticae depends on the regulation of reactive oxygen species homeostasis
Reactive oxygen species (ROS) are molecules that play a prominent role in plant response to numerous stresses, including plant interactions with herbivores. Previous findings indicate that Arabidopsis plants showed an increase in H2O2 accumulation after Tetranychus urticae infestation. Despite its importance, no information has been reported on the relationships between ROS-metabolizing systems and the spider mite-triggered plant-induced responses. In this work, four ROS-related genes that were differentially expressed between the resistant Bla-2 and the susceptible Kon Arabidopsis accessions were selected for the analysis. These genes encode proteins putatively involved in the generation (BBE22) and degradation (GPX7 and GSTU4) of H2O2, and in the degradation of ascorbate (AO). Overexpressing BBE22 and silencing GPX7, GSTU4 and AO resulted in higher leaf damage and better mite performance relative to the wild-type plants. Minor effects on H2O2 accumulation obscure major effects on the expression of genes related to ROS-metabolism and JA and SA signaling pathways, and on ROS-related enzymatic activities. In conclusion, the integration of ROS and ROS-related compounds and enzymes in the response of Arabidopsis to the spider mite T. urticae was confirmed. However, the complex network involved in ROS signaling makes difficult to predict the impact of a specific genetic manipulation.This work was supported by projects BIO2014-53508-R and 618105-FACCE-Era Net Plus from Ministerio de Economía y Competitividad
