209 research outputs found

    Simultaneous clinical resolution of focal segmental glomerulosclerosis associated with chronic lymphocytic leukaemia treated with fludarabine, cyclophosphamide and rituximab

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although renal involvement in advanced haematological malignancies is common, glomerulonephritis associated with lymphoproliferative disorders is rare, and the related pathogenetic mechanisms are still poorly understood. We present a rare case of chronic lymphocytic leukaemia(CLL)-associated focal segmental glomerulosclerosis with nephrotic-range proteinuria.</p> <p>Case presentation</p> <p>A 53-year-old Caucasian man, previously healthy, with no history of hypertension, alcohol use or smoking presented with rapid weight gain, massive peripheral oedema, and hypertension. Laboratory findings included a white blood cell count of 49,800 cells/mm<sup>3 </sup>with an absolute lymphocyte count of 47,000 cells/mm<sup>3</sup>, serum albumin of 2.3 g/dL, urea 65 mg/dL, and creatinine 1.5 mg/dL. A 24-hour urine collection contained 7.1 g protein and significant haematuria. A peripheral blood smear showed mature lymphocytosis and smudge cells. Diagnostic imaging showed mild paraaortic lymphadenopathy with no renal abnormalities. Bone marrow aspiration and trephine biopsy showed diffuse and focal infiltration with B-CLL lymphocytes. Percutaneous renal biopsy revealed total sclerosis in 3/21(14%) of the glomeruli and focal and segmental solidification and sclerosis in 4/21 (19%) glomeruli. A regimen of fludarabine, cyclophosphamide and rituximab was successful in inducing remission of the CLL and clinical resolution of the nephritic-range proteinuria.</p> <p>Conclusions</p> <p>A multidisciplinary approach to monitor both the malignancy and the glomerular lesions is crucial for the optimal management of paraneoplastic glomerulonephritis. Although chemotherapy with fludarabine, cyclophosphamide and rituximab successfully treated CLL-associated nephrotic syndrome in our patient, further studies are required to confirm efficacy in this setting.</p

    Rituximab Treatment in Hepatitis C Infection: An In Vitro Model to Study the Impact of B Cell Depletion on Virus Infectivity

    Get PDF
    Hepatitis C virus (HCV) infected patients with vasculitis are often treated with the B-cell-depleting anti-CD20 antibody rituximab. Treatment reduces the cryoglobulins that cause vasculitis, yet it also leads to a transient increase in liver enzymes and HCV genomic RNA in the periphery. The mechanism underlying the increased viral load is unclear and both direct and indirect roles have been proposed for B cells in HCV infection. We previously reported that HCV can associate with B cells and can trans-infect hepatocytes. We established an in vitro assay to study the effect(s) of rituximab on B cell-associated HCV infectivity. Rituximab-mediated lysis of B cells in vitro increases the level of infectious HCV released from B cells. Our results, using a model where virus does not replicate in B cells, recapitulate observations seen in patients and may explain in part the rapid increase in blood HCV RNA observed after rituximab treatment

    Rituximab for Children with Immune Thrombocytopenia: A Systematic Review

    Get PDF
    BACKGROUND: Rituximab has been widely used off-label as a second line treatment for children with immune thrombocytopenia (ITP). However, its role in the management of pediatric ITP requires clarification. To understand and interpret the available evidence, we conducted a systematic review to assess the efficacy and safety of rituximab for children with ITP. METHODOLOGY/PRINCIPAL FINDINGS: We searched MEDLINE, EMBASE, Cochrane Library, CBM, CNKI, abstract databases of American Society of Hematology, American Society of Clinical Oncology and Pediatric Academic Society. Clinical studies published in full text or abstract only in any language that met predefined inclusion criteria were eligible. Efficacy analysis was restricted to studies enrolling 5 or more patients. Safety was evaluated from all studies that reported data of toxicity. 14 studies (323 patients) were included for efficacy assessment in children with primary ITP. The pooled complete response (platelet count ≥ 100 × 10(9)/L) and response (platelet count ≥ 30 × 10(9)/L) rate after rituximab treatment were 39% (95% CI, 30% to 49%) and 68% (95%CI, 58% to 77%), respectively, with median response duration of 12.8 month. 4 studies (29 patients) were included for efficacy assessment in children with secondary ITP. 11 (64.7%) of 17 patients associated with Evans syndrome achieved response. All 6 patients with systemic lupus erythematosus associated ITP and all 6 patients with autoimmune lymphoproliferative syndrome associated ITP achieved response. 91 patients experienced 108 adverse events associated with rituximab, among that, 91 (84.3%) were mild to moderate, and no death was reported. CONCLUSIONS/SIGNIFICANCE: Randomized controlled studies on effect of rituximab for children with ITP are urgently needed, although a series of uncontrolled studies found that rituximab resulted in a good platelet count response both in children with primary and children secondary ITP. Most adverse events associated with rituximab were mild to moderate, and no death was reported

    In Vivo Islet Protection by a Nuclear Import Inhibitor in a Mouse Model of Type 1 Diabetes

    Get PDF
    Insulin-dependent Type 1 diabetes (T1D) is a devastating autoimmune disease that destroys beta cells within the pancreatic islets and afflicts over 10 million people worldwide. These patients face life-long risks for blindness, cardiovascular and renal diseases, and complications of insulin treatment. New therapies that protect islets from autoimmune destruction and allow continuing insulin production are needed. Increasing evidence regarding the pathomechanism of T1D indicates that islets are destroyed by the relentless attack by autoreactive immune cells evolving from an aberrant action of the innate, in addition to adaptive, immune system that produces islet-toxic cytokines, chemokines, and other effectors of islet inflammation. We tested the hypothesis that targeting nuclear import of stress-responsive transcription factors evoked by agonist-stimulated innate and adaptive immunity receptors would protect islets from autoimmune destruction.Here we show that a first-in-class inhibitor of nuclear import, cSN50 peptide, affords in vivo islet protection following a 2-day course of intense treatment in NOD mice, which resulted in a diabetes-free state for one year without apparent toxicity. This nuclear import inhibitor precipitously reduces the accumulation of islet-destructive autoreactive lymphocytes while enhancing activation-induced cell death of T and B lymphocytes derived from autoimmune diabetes-prone, non-obese diabetic (NOD) mice that develop T1D. Moreover, in this widely used model of human T1D we noted attenuation of pro-inflammatory cytokine and chemokine production in immune cells.These results indicate that a novel form of immunotherapy that targets nuclear import can arrest inflammation-driven destruction of insulin-producing beta cells at the site of autoimmune attack within pancreatic islets during the progression of T1D

    Investigating the Role of T-Cell Avidity and Killing Efficacy in Relation to Type 1 Diabetes Prediction

    Get PDF
    During the progression of the clinical onset of Type 1 Diabetes (T1D), high-risk individuals exhibit multiple islet autoantibodies and high-avidity T cells which progressively destroy beta cells causing overt T1D. In particular, novel autoantibodies, such as those against IA-2 epitopes (aa1-577), had a predictive rate of 100% in a 10-year follow up (rapid progressors), unlike conventional autoantibodies that required 15 years of follow up for a 74% predictive rate (slow progressors). The discrepancy between these two groups is thought to be associated with T-cell avidity, including CD8 and/or CD4 T cells. For this purpose, we build a series of mathematical models incorporating first one clone then multiple clones of islet-specific and pathogenic CD8 and/or CD4 T cells, together with B lymphocytes, to investigate the interaction of T-cell avidity with autoantibodies in predicting disease onset. These models are instrumental in examining several experimental observations associated with T-cell avidity, including the phenomenon of avidity maturation (increased average T-cell avidity over time), based on intra- and cross-clonal competition between T cells in high-risk human subjects. The model shows that the level and persistence of autoantibodies depends not only on the avidity of T cells, but also on the killing efficacy of these cells. Quantification and modeling of autoreactive T-cell avidities can thus determine the level of risk associated with each type of autoantibodies and the timing of T1D disease onset in individuals that have been tested positive for these autoantibodies. Such studies may lead to early diagnosis of the disease in high-risk individuals and thus potentially serve as a means of staging patients for clinical trials of preventive or interventional therapies far before disease onset

    Porcine Sialoadhesin (CD169/Siglec-1) Is an Endocytic Receptor that Allows Targeted Delivery of Toxins and Antigens to Macrophages

    Get PDF
    Sialoadhesin is exclusively expressed on specific subpopulations of macrophages. Since sialoadhesin-positive macrophages are involved in inflammatory autoimmune diseases, such as multiple sclerosis, and potentially in the generation of immune responses, targeted delivery of drugs, toxins or antigens via sialoadhesin-specific immunoconjugates may prove a useful therapeutic strategy. Originally, sialoadhesin was characterized as a lymphocyte adhesion molecule, though recently its involvement in internalization of sialic acid carrying pathogens was shown, suggesting that sialoadhesin is an endocytic receptor. In this report, we show that porcine sialoadhesin-specific antibodies and F(ab')2 fragments trigger sialoadhesin internalization, both in primary porcine macrophages and in cells expressing recombinant porcine sialoadhesin. Using chemical inhibitors, double immunofluorescence stainings and dominant-negative constructs, porcine sialoadhesin internalization was shown to be clathrin- and Eps15-dependent and to result in targeting to early endosomes but not lysosomes. Besides characterizing the sialoadhesin endocytosis mechanism, two sialoadhesin-specific immunoconjugates were evaluated. We observed that porcine sialoadhesin-specific immunotoxins efficiently kill sialoadhesin-expressing macrophages. Furthermore, porcine sialoadhesin-specific albumin immunoconjugates were shown to be internalized in macrophages and immunization with these immunoconjugates resulted in a rapid and robust induction of albumin-specific antibodies, this compared to immunization with albumin alone. Together, these data expand sialoadhesin functionality and show that it can function as an endocytic receptor, a feature that cannot only be misused by sialic acid carrying pathogens, but that may also be used for specific targeting of toxins or antigens to sialoadhesin-expressing macrophages

    Disease recurrence in paediatric renal transplantation

    Get PDF
    Renal transplantation (Tx) is the treatment of choice for end-stage renal disease. The incidence of acute rejection after renal Tx has decreased because of improving early immunosuppression, but the risk of disease recurrence (DR) is becoming relatively high, with a greater prevalence in children than in adults, thereby increasing patient morbidity, graft loss (GL) and, sometimes, mortality rate. The current overall graft loss to DR is 7–8%, mainly due to primary glomerulonephritis (70–80%) and inherited metabolic diseases. The more typical presentation is a recurrence of the full disease, either with a high risk of GL (focal and segmental glomerulosclerosis 14–50% DR, 40–60% GL; atypical haemolytic uraemic syndrome 20–80% DR, 10–83% GL; membranoproliferative glomerulonephritis 30–100% DR, 17–61% GL; membranous nephropathy ∼30% DR, ∼50% GL; lipoprotein glomerulopathy ∼100% DR and GL; primary hyperoxaluria type 1 80–100% DR and GL) or with a low risk of GL [immunoglobulin (Ig)A nephropathy 36–60% DR, 7–10% GL; systemic lupus erythematosus 0–30% DR, 0–5% GL; anti-neutrophilic cytoplasmic antibody (ANCA)-associated glomerulonephritis]. Recurrence may also occur with a delayed risk of GL, such as insulin-dependent diabetes mellitus, sickle cell disease, endemic nephropathy, and sarcoidosis. In other primary diseases, the post-Tx course may be complicated by specific events that are different from overt recurrence: proteinuria or cancer in some genetic forms of nephrotic syndrome, anti-glomerular basement membrane antibodies-associated glomerulonephritis (Alport syndrome, Goodpasture syndrome), and graft involvement as a consequence of lower urinary tract abnormality or human immunodeficiency virus (HIV) nephropathy. Some other post-Tx conditions may mimic recurrence, such as de novo membranous glomerulonephritis, IgA nephropathy, microangiopathy, or isolated specific deposits (cystinosis, Fabry disease). Adequate strategies should therefore be added to kidney Tx, such as donor selection, associated liver Tx, plasmatherapy, specific immunosuppression protocols. In such conditions, very few patients may be excluded from kidney Tx only because of a major risk of DR and repeated GL. In the near future the issue of DR after kidney Tx may benefit from alternatives to organ Tx, such as recombinant proteins, specific monoclonal antibodies, cell/gene therapy, and chaperone molecules

    Regulation of type 1 diabetes development and B-cell activation in nonobese diabetic mice by early life exposure to a diabetogenic environment

    Get PDF
    Microbes, including viruses, influence type 1 diabetes (T1D) development, but many such influences remain undefined. Previous work on underlying immune mechanisms has focussed on cytokines and T cells. Here, we compared two nonobese diabetic (NOD) mouse colonies, NODlow and NODhigh, differing markedly in their cumulative T1D incidence (22% vs. 90% by 30 weeks in females). NODhigh mice harbored more complex intestinal microbiota, including several pathobionts; both colonies harbored segmented filamentous bacteria (SFB), thought to suppress T1D. Young NODhigh females had increased B-cell activation in their mesenteric lymph nodes. These phenotypes were transmissible. Co-housing of NODlow with NODhigh mice after weaning did not change T1D development, but T1D incidence was increased in female offspring of co-housed NODlow mice, which were exposed to the NODhigh environment both before and after weaning. These offspring also acquired microbiota and B-cell activation approaching those of NODhigh mice. In NODlow females, the low rate of T1D was unaffected by cyclophosphamide but increased by PD-L1 blockade. Thus, environmental exposures that are innocuous later in life may promote T1D progression if acquired early during immune development, possibly by altering B-cell activation and/or PD-L1 function. Moreover, T1D suppression in NOD mice by SFB may depend on the presence of other microbial influences. The complexity of microbial immune regulation revealed in this murine model may also be relevant to the environmental regulation of human T1D

    B cell depletion in autoimmune diabetes:insights from murine models

    Get PDF
    INTRODUCTION: The incidence of type 1 diabetes (T1D) is rising for reasons that largely elude us. New strategies aimed at halting the disease process are needed. One type of immune cell thought to contribute to T1D is the B lymphocyte. The first Phase II trial of B cell depletion in new onset T1D patients indicated that this slowed the destruction of insulin-producing pancreatic beta cells. The mechanistic basis of the beneficial effects remains unclear. AREAS COVERED: Studies of B cell depletion and deficiency in animal models of T1D. How B cells can influence T cell-dependent autoimmune diabetes in animal models. The heterogeneity of B cell populations and current evidence for the potential contribution of specific B cell subsets to diabetes, with emphasis on marginal zone B cells and B1 B cells. EXPERT OPINION: B cells can influence the T cell response to islet antigens and B cell depletion or genetic deficiency is associated with decreased insulitis in animal models. New evidence suggests that B1 cells may contribute to diabetes pathogenesis. A better understanding of the roles of individual B cell subsets in disease will permit fine-tuning of therapeutic strategies to modify these populations
    • …
    corecore