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Abstract

Microbes, including viruses, influence type 1 diabetes (T1D) development, but many such

influences remain undefined. Previous work on underlying immune mechanisms has

focussed on cytokines and T cells. Here, we compared two nonobese diabetic (NOD)

mouse colonies, NODlow and NODhigh, differing markedly in their cumulative T1D incidence

(22% vs. 90% by 30 weeks in females). NODhigh mice harbored more complex intestinal

microbiota, including several pathobionts; both colonies harbored segmented filamentous

bacteria (SFB), thought to suppress T1D. Young NODhigh females had increased B-cell acti-

vation in their mesenteric lymph nodes. These phenotypes were transmissible. Co-housing

of NODlow with NODhigh mice after weaning did not change T1D development, but T1D inci-

dence was increased in female offspring of co-housed NODlow mice, which were exposed to

the NODhigh environment both before and after weaning. These offspring also acquired

microbiota and B-cell activation approaching those of NODhigh mice. In NODlow females, the

low rate of T1D was unaffected by cyclophosphamide but increased by PD-L1 blockade.

Thus, environmental exposures that are innocuous later in life may promote T1D progres-

sion if acquired early during immune development, possibly by altering B-cell activation and/

or PD-L1 function. Moreover, T1D suppression in NOD mice by SFB may depend on the

presence of other microbial influences. The complexity of microbial immune regulation

revealed in this murine model may also be relevant to the environmental regulation of

human T1D.
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Introduction

Type 1 Diabetes (T1D) is a chronic autoimmune disease in which pancreatic beta-cells are

destroyed by self-reactive lymphocytes, resulting in insulin deficiency and hyperglycaemia.

T1D development in genetically susceptible individuals [1] depends on environmental factors,

consistent with the modest concordance for T1D in monozygotic twins (50–60%)[2]. Impor-

tantly, the incidence of T1D has been rising at 3–4% per year in European children in the last

15 years [3, 4], and this cannot be explained on the basis of genetic changes in the population.

Improved sanitation and hygiene, alongside rising pollution, are thought to have

altered immune regulation by the environment in industrialized countries, both in the

context of allergic [5] and autoimmune disease [6] (“Hygiene Hypothesis”). Regulation of

autoimmunity by infection was also demonstrated by early work showing that malaria-

infected (NZB × NZW) F1 mice were protected from lupus nephritis [7]. Consistent with

microbial regulation of autoimmunity, recent studies have reported differences in the

intestinal microbiota between patients with new-onset T1D, autoantibody-positive indi-

viduals at risk, first-degree relatives, and healthy controls [8–13], although the identifica-

tion of causal influences remains in its infancy.

Environmental factors, and specifically the intestinal microbiota, also are critical in the

nonobese diabetic (NOD) mouse, a well-characterized model of T1D [14], which shares many

genetic risk determinants with human T1D. Consistent with the Hygiene Hypothesis, germ-

free NOD mice develop T1D with a high incidence in both males and females [15–17], whereas

T1D development is more variable, sex-dependent, and often lower in conventional facilities

[18, 19]. The Hygiene Hypothesis is also consistent with experiments showing that intestinal

metazoan parasites [20], bacterial pathogens [21], and commensal segmented filamentous bac-

teria (SFB) [22] suppress the development of T1D, often by regulating the cytokine milieu for

T-cell activation and regulation [23]. In contrast, several viral infections promote T1D devel-

opment; given that viral infections stimulate Th1 immunity, this is consistent with the notion

that autoimmune destruction of pancreatic islets is a Th1-dependent process [23]. Other fac-

tors that influence T1D development in NOD mice, such as sex [24], drinking water acidity

[25], and antibiotic treatment [26, 27], also appear to act via the gut microbiota. Thus, T1D

incidence rates in this model are thought to depend on a balance of T1D-promoting and

-inhibiting microbial influences on T-cell immunity. Given that microbiota vary widely

between animal facilities worldwide, it is not surprising that T1D incidence rates also vary

widely between such facilities [19]. In many cases the relevant microbial and viral factors and

underlying immune mechanisms remain undefined.

We previously reported on two colonies of NOD mice, which had been derived from shared

founders but maintained separately for many years [28]. Whereas only� 20% of females from

one colony, called “NODlow”, developed T1D by 30 weeks of age,� 90% of females in the other

colony, called “NODhigh”, became diabetic. Here, we investigated environmental and immuno-

phenotypic differences between the two colonies, as well as the transmissibility of the colony dif-

ferences in T1D development. Together, these studies revealed further complexities in the

environmental regulation of T1D and novel features of the underlying immune mechanisms.

Materials and methods

Mice

Animal studies were performed according to institutional and national guidelines under UK

Home Office Project Licenses 80/2156 and 80/2442. The two NOD sister colonies used in this

study were kindly provided by Prof Linda Wicker and bred under specific pathogen–free
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(SPF) conditions either at the Centre for Biomedical Services, University of Cambridge,

named “NODlow”, or at Biological Services Unit of the Department of Pathology, University of

Cambridge, named “NODhigh”. The NODlow colony has consistently maintained a T1D inci-

dence of� 22% (measured in females up to 30 weeks of age). The NODhigh colony was derived

from NODlow founders around 2002; its T1D incidence rose gradually after the founders were

moved to Biological Services Unit of the Department of Pathology, and has subsequently

remained high for several years (� 90% by 30 weeks of age in females). NOD genotype was

authenticated in a breeding trio from each colony using an array of 384 SNPs, spaced� 7 MB

apart across the entire genome, which distinguish common inbred mouse strains (Charles

River Laboratories). Results from one of the SNPs in the NODlow analysis were technically

uninformative; all other results were consistent with homozygous NOD genotype. For inci-

dence studies, animals were aged to 30 weeks and observed daily for signs of diabetes, such as

polyuria, and of other signs of ill health; diabetes was confirmed by measurement of gluco-

suria, using Diastix (Bayer Diagnostics). Glycosuria is a physiologically relevant endpoint,

indicating that blood glucose levels have exceeded the capacity for renal reabsorption. This is

thought to occur at ca. 300 mg/dl plasma glucose, i.e., at twice the normal levels [29]. As a

humane endpoint, development of diabetes triggered prompt euthanasia by CO2 anesthesia

followed by cervical dislocation. There were no unexplained deaths or other signs of ill health.

Animals were maintained in individually ventilated cages and received water ad libitum.

Both colonies were maintained by breeding the first litter in each generation and initially

kept on the same diet (RM3 [E] irradiated diet, Special Diet Services, Witham, UK); breed-

ers received the same diet supplemented with 7% oil. In 2012, the supplier for the diet used

in the NODlow colony was changed (no. 105 diet, SAFE SAS, Augy, France) without a

change in incidence. Routine veterinary microbiological screening of sentinel mice in both

colonies was carried out according to current recommendations [30, 31] of the Federation

of European Laboratory Animal Sciences Associations, or better, as discussed in the text

(B&K Diagnostics).

Insulitis scores

Pancreata were harvested, preserved in 4% v/v in paraformaldehyde solution, and processed

for wax histology. Five-micrometer sections were taken at three levels and stained with hema-

toxylin and eosin. Total islets per section were counted and the degree of cellular infiltration

was scored as follows: no infiltration; peri-insulitis = infiltrate present as a single cluster of

immune cells at one pole of the islet; intra-insulitis = diffuse pattern of infiltration within the

islet.

PD-L1 inhibition

As described previously [32], mice were injected intra-peritoneally with a PD-L1 blocking

monoclonal antibody (clone MIH5) at a dose of 2 mg/mouse. Development of diabetes was

followed for 24 days post injection.

Cyclophosphamide treatment

As described previously [33], cyclophosphamide (Endoxana, Baxter Healthcare) was prepared

in 0.9% normal saline at 20 mg/ml immediately before intra-peritoneal administration. Devel-

opment of diabetes was followed for 24 days post injection.

Pre-weaning environment and autoimmunity in mice
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Cell isolation, antibodies and flow cytometry

Lymphocyte cell suspensions were prepared in complete medium RPMI (Lonza) by lymph

node disruption using 100 μm nylon mesh (BD Falcon).

For flow cytometry, the following antibodies were purchased from Biolegend: anti

CD3-PE-Cy7 (clone 145-2C11; anti CD4-PerCP (clone RM4-5); anti CD69-FITC (clone

H1.2F3). Anti B220-eFluor450 (clone RA3-6B2) was from eBioscience. For anti Foxp3-PE

(clone FJK-16s) staining, cells were first fixed and permeabilized using the Foxp3 / Transcrip-

tion Factor Staining Buffer Set from eBioscience following the manufacturer’s instructions.

Analytical flow cytometry was conducted using a FACSCanto II (BD Biosciences), and the

data were processed using FlowJo software (Tree Star).

Anti-BAFF ELISA

Serum BAFF was measured by standard colorimetric ELISA using rat anti-mouse BAFF (clone

121808) as capture antibody and biotinylated goat-anti mouse BAFF as detection antibody

(both R&D Systems). BAFF concentration was determined using a standard curve of recombi-

nant mouse BAFF (R&D Systems).

Bacterial 16S DNA detection in feces

Fecal samples were collected from mice and stored at -80˚C until processing. DNA was iso-

lated using a DNA Qiagen kit following manufacturer’s instructions. Bacterial DNA was

detected by PCR analysis for 16S ribosomal RNA genes, using the following primers: for Exist-

ing Universal Bacterial (EUB), forward primer CGGCAACGAGCGCAACCCand reverse primer

CCATTGTAGCACGTGTGTAGCCwere used as described previously [34]. For Helicobacter
hepaticus, forward primer ATGGGTAAGAAAATAGCAAAAAGATTGCAA and reverse primer

CTATTTCATATCCATAAGCTCTTGAGAATCwere used as described previously [35]. For SFB,

forward primer GACGCTGAGGCATGAGAGCATand reverse primer GACGGCACGGATTGTT
ATTCAwere used as described previously [22]. Quantitative PCR was carried out using KAPA

SYBER FAST qPCR Kit (KAPABIOSYSTEMS) and following the manufacturer’s instructions

on the ABI PRISM 7000 Sequence detection system (Applied Biosystems). PCR signals for spe-

cies-specific 16S rRNA genes were normalized to EUB. For qualitative analysis, the 705 bp

PCR products were run on a 2% agarose (BIOLINE) gel in TEA; the band size was determined

against the Gene Ruler 100 bp DNA Ladder (Thermo Scientific).

Co-housing experiment

Three-week-old NODlow mice were transferred from the Centre for Biomedical Services, Uni-

versity of Cambridge to the Biological Services Unit of the Department of Pathology, Univer-

sity of Cambridge. After resting for 48 hours, mice were co-housed with age- and sex-matched

NODhigh mice and scored for T1D up to 30 weeks of age. At 6 weeks of age, some of the co-

housed animals of NODlow and NODhigh origin were separated from each other and set up for

breeding. Female offspring from both colonies of origin were then co-housed once more at

weaning age (three weeks) and scored for T1D until 30 weeks of age.

Fecal matter transfer experiments

Three-week-old NODlow females were gavaged with diluted fecal contents from NODhigh

female donors. Briefly, fecal matter was collected from three12-week-old NODhigh females and

resuspended in 50 volumes of sterile water. After filtering the suspension with a 70 μm nylon

strainer, 250 μl of this suspension was given to each recipient by oral gavage using a 24G
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round tip gavage needle. Recipients received another dose of fecal matter after resting for 48

hours. Fresh fecal samples from individual recipients were collected at various times, starting

from two weeks post transfer. Mice were maintained in an isolator dedicated to this study and

scored for T1D up to 30 weeks of age.

IonTorrent sequencing and analysis

DNA from fecal samples was extracted using QIAamp FAST DNA Stool Kit (QIAGEN) with

additional digestion in the presence of lysozyme (20 mg/ml). Variable V5 and V6 regions of

the 16S rRNA gene were amplified from DNA from fecal samples using the barcoded forward

fusion primer CCATCTCATCCCTGCGTGTCTCCGACTCAGATTAGATACCCYGGTAGTCC in

combination with the reverse fusion primer CCTCTCTATGGGCAGTCGGTGATACGAGCTGAC
GACARCCATG. The sequences include IonTorrent PGM-specific adaptors (in italics) that are

required for high throughput sequencing. The PCR-amplified 16S V5-V6 amplicons were

purified from agarose gels using Qiagen Gel extraction kit (according to manufacturer’s

instructions) and then prepared for sequencing on the IonTorrent PGM system using Ion

PGMTM Template OT2 400 Kit and Ion PGMTM Sequencing 400 Kit according to the manu-

facturer’s instructions (Life Technologies). The number of reads obtained per sample was

between 7000 and 65000. Data analysis was performed using the QIIME pipeline version 1.8.0.

Operational taxonomic units (OTU) were picked using uclust [36] and the latest greengenes

database (http://greengenes.secondgenome.com).

Statistical analysis

Statistical analyses were performed using GraphPad Prism. Kaplan–Meier analysis of cumula-

tive disease incidence was performed, and incidence curves were compared by the log-rank

test. Differences in immuno-phenotypes were evaluated by unpaired, two-tailed Student t test,

or one- or two-way-ANOVA, as appropriate.

Statistical analysis of metagenomic data using R was performed using the QIIME pipeline

[37]. Briefly, the ’phyloseq’ and ’DESeq2’ packages were used. The function ’DESeq’ performs

the differential taxon-count analysis based on the negative binomial distribution, and uses the

OTU table as its input. It returns the estimated log2-fold-changes and p values (Wald test) cor-

rected for multiple testing for the comparison of interest (Benjamini & Hochberg correction).

Principal coordinates analysis, a standard biostatistics technique [38, 39], was performed in

order to represent the dissimilarity between any two microbiomes (measured by their

unweighted UniFrac distances) in two dimensions.

Results

Natural history and genetics of NODlow and NODhigh colonies

We have previously reported that two sister NOD colonies kept in different animal houses

develop T1D with low (NODlow) and high (NODhigh) cumulative incidence in females [28]

(shown here again in Fig 1A). The difference spans the range observed in NOD colonies

worldwide [19]. In both colonies, male incidence was lower, consistent with findings in many

SPF or conventionally-housed NOD colonies [19, 40, 41]. Accordingly, subsequent microbio-

logical, phenotypic and disease incidence studies were carried out on females only. NODlow

mice had been housed in an SPF facility with individually ventilated cages and maintained sta-

ble low rates of disease incidence for at least a decade. The NODhigh colony was derived from

NODlow founders around 2002, when founders were transferred to a different facility with

Pre-weaning environment and autoimmunity in mice
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open cages; incidence rose gradually over the next two years and subsequently remained stable

at a high level.

In order to exclude the possibility of genetic contamination with other common inbred

strains, genotyping was performed in a breeding trio from each colony by screening 364 SNPs

spread across the entire genome, spaced� 7 MB apart on average, and representing common

inbred mouse strains. All informative SNPs were consistent with homozygosity for the NOD

genotype.

To assess whether the difference in development of T1D in the two colonies reflected differ-

ent degrees of insulitis, we examined H&E-stained pancreatic sections. The level of infiltration

in the pancreatic islets was similar between NODhigh and NODlow mice, both at 6 weeks (Fig

1B) and at 30 weeks of age (Fig 1C and 1D), but overall there was more insulitis in the aged

mice. In summary, the difference in diabetes development was not due to genetic contamina-

tion, nor was it related to differences in the degree of insulitis between the two colonies.

Low T1D incidence in NODlow mice is unaffected by cyclophosphamide

treatment but depends on PD-L1

Next, we examined mechanisms that could prevent progression to T1D in NODlow mice. In

some settings, cyclophosphamide has been shown to promote the rapid progression to T1D in

pre-diabetic NOD mice by depleting regulatory T cells [33, 42]. We confirmed our previous

Fig 1. Characterisation of NODlow and NODhigh colonies. (A) Kaplan-Meier survival curves showing diabetes-free survival up 30 weeks of

age in 85 NODlow (black circles) and 45 NODhigh (white circles) female mice. Incidence curves were compared by the log-rank test. From [28]

with permission; Copyright 2013, The American Association of Immunologists, Inc. (B) and (C) Percent of islets exhibiting no insulitis, peri- or

intra-insulitis in six NODlow vs. eight NODhigh 6-week-old female mice (B), or in seven NODlow vs. five NODhigh 30-week-old female mice (C).

Each bar represents analysis of three pancreatic sections from an individual mouse. (D) Examples of H&E stained pancreatic sections from

30-week-old NODlow females showing, on the left, two islets without insulitis and, on the right, one islet each with peri-insulitis (*) and intra-

insulitis (**).

https://doi.org/10.1371/journal.pone.0181964.g001
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findings [33] that most cyclophosphamide-treated pre-diabetic NODhigh females rapidly pro-

gressed to overt T1D within two weeks (Fig 2A). This contrasted with the variable age of onset

of T1D in untreated NODhigh females, between 12 and 30 weeks of age (cf. Fig 1A). Surpris-

ingly, however, the same treatment failed to trigger T1D in pre-diabetic NODlow females (Fig

2A). Moreover, by flow cytometry we established that percentages and absolute numbers of

CD4+ Foxp3+ T cells were similar in NODlow and NODhigh mice (Fig 2B and 2C). Together,

these findings suggest that the low rate of T1D development in NODlow mice does not depend

on CD4+ Treg cells.

Anti-PD-L1 antibody treatment affords another means of overcoming resistance to autoim-

munity [43, 44] by disrupting inhibitory signals that prevent activation and effector functions

of pathogenic T cells [45, 46]. Blockade of this pathway by intra-peritoneal injection of anti-

PD-L1 antibody rapidly precipitated T1D in old pre-diabetic NODlow mice (Fig 2D). The com-

parison to a small control group (n = 4) in Fig 2D did not reach statistical significance

(p = 0.09, log rank test), but the low incidence of T1D in the control group was in line with

incidence in the NODlow colony (see Fig 1A), whereas the rapid rise in T1D incidence (to 5/6

animals = 83%) within 3 weeks of anti-PD-L1 treatment was clearly different. We concluded

that in NODlow mice autoimmunity is maintained in a latent, sub-clinical state by PD-1/

PD-L1 signalling.

Fig 2. T1D is induced in NODlow mice by anti-PD-L1 antibody, but not by cyclophosphamide. (A) Normoglycaemic (pre-diabetic) NODlow

(black circles) and NODhigh (white circles) female mice were treated at 16–18 weeks of age with cyclophosphamide, and T1D development was

monitored daily up to 25 days post intra-peritoneal injection. (B) Representative FACS plots for CD4 (x-axis) vs. FoxP3 (y-axis) on gated CD4+ T

cells from NODlow (left) and NODhigh (right) spleens. (C) Percentages (left) and absolute numbers (right) of FoxP3+ CD4 T cells from pancreatic

lymph nodes of NODlow (full circles) and NODhigh (white circles) mice. Statistical analysis was performed using Student’s t test. (D) Normoglycaemic

(pre-diabetic) NODlow females were treated with anti- (α-) PD-L1 (clone MIH5, grey circles) or PBS (black circles) at 12–14 weeks of age, and T1D

development was monitored daily up to 25 days post intra-peritoneal injection. In (A) and (D), diabetes-free survival was compared between groups

by Kaplan-Meier analysis and log rank test.

https://doi.org/10.1371/journal.pone.0181964.g002
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Environmental differences between NODhigh and NODlow colonies

Next, we examined environmental differences that might explain the colony difference in T1D

development. Both colonies were maintained on the same 12h/12h light/dark cycle, and kept

on the same diet initially; the diet was modified in the NODlow colony in 2012 without inci-

dence being affected. The drinking water in both animal facilities was neutral.

Given the importance of microbes in regulating autoimmunity, we reviewed veterinary

screening reports of the two colonies. Differences in microbial colonisation and persistent viral

infection were apparent (summarized in Fig 3A). Helicobacter (H.) hepaticus and H. typhlonius
were detected in NODhigh, but not in NODlow mice. The difference in H. hepaticus infection

was confirmed by PCR analysis of feces from the two colonies: 5/6 NODhigh animals tested posi-

tive for H. hepaticus-specific 16S RNA genes, but none of the NODlow animals did (Fig 3B).

Veterinary screening for murine norovirus (MNV), in accordance with the 2014 revised

FELASA guidelines [31], was positive in the NODhigh colony, as well (see Supporting Informa-

tion, S1 Appendix). MNV was known to have been introduced into this colony years after the

animals had already acquired their high cumulative T1D incidence. Therefore, MNV could

not have been the cause of the rise in incidence. We nonetheless addressed the formal possibil-

ity that MNV might be diabetogenic, but observed no rise in T1D after infecting NODlow mice

with MNV strain 3 (see Supporting Information, S1 Appendix). Thus, neither the natural his-

tory of the NODhigh colony nor the outcomes of deliberate infection suggest any diabetogenic

role for MNV in this system.

Even though they are not included in routine veterinary screening, we used PCR to test for

segmented filamentous bacteria (SFB), whose presence in NOD intestines reportedly correlates

with protection from T1D [22]. However, feces from both colonies harbored similar levels of

SFB, as judged by quantitative PCR analysis (Fig 3C). This finding ruled out differences in SFB

colonisation as the explanation for the difference in diabetes incidence.

A more comprehensive survey of microbial differences between the two NOD colonies was

then performed. High-throughput sequencing of 16S rRNA genes confirmed that NODhigh

but not NODlow mice were colonized by Helicobacter spp. (Fig 3D and S1 Fig). This analysis

also detected differences in the abundance of several other bacterial taxa, some of which

appeared highly significant (Paraprevotellaceae, Anaerostipes), whereas others were more

modest (Prevotella copri). Most represented gains by the NODhigh colony, but there were a few

losses, as well (Fig 3D). The overall abundance of major clades barely differed between the col-

onies (horizontal lines in Fig 3D).

Helicobacter spp. and MNV have been associated with intestinal inflammation in other

model systems (cf. Discussion), but in the NODhigh colony, we found no inflammation of the

intestinal lining upon histological examination. Consistent with this, young animals in this col-

ony exhibited no failure to thrive; indeed, despite being on the same diet, they gained slightly

more weight than age-matched NODlow animals (Fig 3E).

In summary, the microbiota of NODlow mice differed markedly from those of the NODhigh

colony. Compared to NODlow mice, NODhigh mice had lost a few species while gaining several

others, including the known pathobionts, MNV and two Helicobacter species. The presence of

SFB in the NODhigh colony raised the possibility that any suppressive influence of SFB on auto-

immunity was overcome by other, diabetes-promoting factors in its environment.

Increased cellularity and B-cell activation in mesenteric lymph nodes

from NODhigh mice

We hypothesized that persistence of several pathobionts in the NODhigh colony might be asso-

ciated with increased immune activation in gut-related lymphoid organs. Indeed, young

Pre-weaning environment and autoimmunity in mice
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Fig 3. Microbiological characterisation of female NODlow and NODhigh mice. (A) Venn diagram depicting microorganisms consistently

detected by routine health screens in sentinel mice from the NODlow and NODhigh colonies (also includes the results of screening for SFB). None of

the other viruses, bacteria or parasites that are routinely tested under FELASA guidelines [30, 31] were detected in either colony. (B and C)

Quantification by qPCR (normalized to EUB) of H. hepaticus (B) and SFB (C) in the feces of individual NODlow (black circles) and NODhigh (white

circles) mice; horizontal bars represent means. Species-specific primers for the 16S RNA gene were used. (D) Metagenomic analysis of bacterial

16S rRNA genes from NODlow and NODhigh females at 5 weeks of age. Different bacterial clades are color-coded, and log2-fold mean differences

between the detection frequencies in NODhigh and NODlow mice shown on the y-axis; positive values show over-representation in the NODhigh

colony. The dotted horizontal lines represent tenfold differences in either direction; significant colony differences (p < 0.05 after correcting for

multiple comparisons) of tenfold or greater are shown as large squares with their names given. (E) Weights of individual age-matched NODlow and

NODhigh females (symbols as in B/C); means (horizontal lines) were compared by Student’s t test.

https://doi.org/10.1371/journal.pone.0181964.g003
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NODhigh females had greater numbers of mesenteric lymph node (MLN) cells than NODlow

mice (Fig 4A). In contrast, no colony differences were observed in the cell counts of inguinal,

axillary, or pancreatic lymph nodes. Interestingly, the percentage of B cells expressing the early

activation marker CD69 was increased in MLN from NODhigh mice, but not spleen (Fig 4B

and 4C). Therefore, our data suggested that B cells in the MLNs of young female NODhigh

mice respond more actively to local stimulation, well before the onset of overt autoimmunity.

Even though the activation phenotype appeared to be restricted to MLN, it was possible

that B cell immune homeostasis was perturbed more broadly in NODhigh mice. To address this

possibility, we measured the concentration of serum B cell activating factor (BAFF), a cytokine

that plays a key role in B cell activation as well as maturation and is elevated in autoimmune

conditions [47, 48]. The level of BAFF was increased in NODhigh compared to NODlow females

at 6 weeks of age (S2 Fig), consistent with altered B-cell homeostasis as well as with B-cell

activation.

Exposure of NODlow mice to NODhigh mice after weaning does not

increase T1D incidence

To examine the transmissibility of colony differences in T1D development, 3-week-old female

NODlow weanlings were co-housed with sex- and age-matched NODhigh mice, and both

groups were monitored for T1D up to 30 weeks of age (Fig 5A). Co-housed NODlow and

Fig 4. Increased B-cell activation in mesenteric lymph nodes of NODhigh mice. (A) Total cell counts in

the indicated lymphoid organs of NODlow (closed circles) vs. NODhigh (open circles) mice: MLN = mesenteric

lymph nodes, PLN = pancreatic lymph nodes, ILN = inguinal lymph nodes. Analysis by 2-way ANOVA with p

values given for significant colony differences. (B) Representative flow cytometry dot plots of CD69high B cells

isolated from mesenteric lymph nodes of NODlow (left) and NODhigh (right) females at six weeks of age. (C)

Frequencies of CD69high cells in gated B220+ B cells from mesenteric lymph nodes (MLN) or spleens (SP) of

NODlow (closed circles) vs. NODhigh (open circles) female mice. Individual mice, means and significant p

values (p < 0.05, by 2-way ANOVA) are shown.

https://doi.org/10.1371/journal.pone.0181964.g004
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Fig 5. Exposure to a diabetogenic environment after the age of weaning does not modify T1D

development in NODlow mice. (A) Schematic illustration of continuous co-housing of NODlow (grey outline)

with NODhigh (black outline) mice from 3 weeks of age onwards. (B) Kaplan-Meier analysis of diabetes-free

survival in females up to 30 weeks of age, comparing the original NODlow (black circles, n = 85) and NODhigh

(white circles, n = 45) colonies (cf. Fig 1A) with NODlow (full grey triangles) and NODhigh females (empty grey

triangles) that were co-housed from three weeks of age. Despite being in a shared environment, the animals

retained the disease incidence curves of their colonies of origin. (C) Diabetes-free survival in females from the

original colonies (symbols as in B) was compared with that of NODlow mice orally gavaged with fecal matter

collected from 12-week-old female pre-diabetic NODhigh mice (closed grey diamonds) at three weeks of age

Pre-weaning environment and autoimmunity in mice
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NODhigh mice developed T1D with the same cumulative incidence as their parental colonies

(Fig 5B), indicating that exposure to the NODhigh environment after the age of weaning had

no effect on the course of the disease, and vice versa.

This experiment did not rule out the possibility that the relevant environmental factor was

difficult to transmit by co-housing. In order to examine another method of exposure, NODlow

weanlings were orally gavaged with faecal matter obtained from 12-week-old pre-diabetic

NODhigh females and were kept in dedicated isolators until they reached 30 weeks of age.

Acquisition of H. hepaticus was verified by PCR (S3 Fig). Nonetheless, these mice developed

T1D with the same low rate of incidence shown by the NODlow colony (Fig 5C).

These data show that, after the age of weaning, exposure to transmissible factors in the

NODhigh environment, including some known pathobionts, does not raise T1D incidence in

NODlow mice. This was surprising because post-weaning exposure to various microbial or

viral species has previously been shown to alter T1D incidence in NOD mice [21, 23, 24, 49].

Offspring of co-housed NODlow mice acquire increased T1D incidence,

microbiota and immune phenotypes similar to NODhigh mice

We hypothesized that, in order to affect T1D development, exposure to the diabetogenic envi-

ronmental factor(s) has to occur prior to weaning. To test this hypothesis, sex- and age-matched

NODlow and NODhigh mice were co-housed in the NODhigh animal facility, beginning at three

weeks of age. The co-housed mice were separated at 6–7 weeks for breeding. Their offspring

were then co-housed again, starting at three weeks of age, and T1D development was monitored

up to 30 weeks of age (Fig 6A). While the offspring of co-housed NODhigh mice maintained

high rates of T1D incidence, the offspring of co-housed NODlow mice showed significantly

increased T1D incidence, compared to the parental NODlow colony (Fig 6B). The cumulative

disease incidence was not as high as that observed in the established NODhigh colony; nonethe-

less, the data suggested that exposure to the NODhigh diabetogenic environment throughout the

animals’ life span, including the pre-weaning period, had a dominant effect on increasing T1D

development in these mice.

In order to examine whether the offspring of co-housed NODlow mice had acquired

NODhigh-like gut microbiota, intestinal 16S rRNA gene sequences from these mice were

compared with animals from the original NODhigh and NODlow colonies at 5 weeks of age

(Fig 6C and S1 Fig). Fig 6C shows a Principal Coordinates Analysis, a statistical technique

that represents differences in microbiota between any pair of mice as a two-dimensional

map (see Materials and Methods and [38, 39]). This analysis clearly showed that the gut

microbiota of the offspring of co-housed NODlow mice was markedly different from the

original NODlow colony, approaching that of NODhigh mice (Fig 6C). Examination of the

statistically significant species differences showed complete or partial acquisition of most of

the species prevalent in the established NODhigh colony but not in the original NODlow col-

ony, including Helicobacter spp. (S1 Fig). Of the two genera present in the original NODlow

but not in the NODhigh colony, Anaerostipes was displaced in the offspring of co-housed

NODlow animals, whereas Anaeroplasma was retained (S1 Fig).

The MLNs in the offspring of co-housed NODlow animals also seemed to approach the

more activated phenotype of the NODhigh colony. CD69 expression in mesenteric lymph node

and maintained in isolators. Fecal gavage did not raise T1D incidence over that in the NODlow parental colony

(p > 0.05, log rank test), despite successful transmission of H. hepaticus (cf. S3 Fig).

https://doi.org/10.1371/journal.pone.0181964.g005
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B cells from second-generation co-housed NODlow mice was similar to that detected in estab-

lished NODhigh mice (Fig 6D).

In summary, NODlow animals co-housed with NODhigh animals (or successfully infected

with at least some of their pathobionts by other routes) from weaning age exhibited no change in

their T1D incidence in the first generation. In the second generation of co-housing, however, the

NODlow animals partially acquired the increased T1D incidence and altered intestinal micro-

biota of the established NODhigh colony, correlating with increased MLN B-cell activation.

Discussion and conclusions

In genetically predisposed individuals, development of T1D is regulated by environmental fac-

tors. Specifically, the progression to overt diabetes in the NOD mouse model is markedly influ-

enced both by the commensal intestinal flora and by infection with pathogens [23–27, 49].

This study, a comparison of two colonies of NOD mice with very different rates of T1D inci-

dence in females, revealed novel aspects of environmental regulation of autoimmunity. The

NODhigh colony was shown to harbour a transmissible diabetes-promoting factor (or a combi-

nation of such factors), which differs from previously-described microbial influences. It acts

during a critical, early window of susceptibility, prior to weaning age, and overcomes the

apparent inhibition of T1D by SFB. Elevated T1D incidence in this system correlates with local

activation of B cells. After weaning, however, NODlow mice maintain T1D resistance through

PD-L1 signalling, even when Treg cells are depleted.

A dominant diabetogenic transmissible factor in NODhigh mice

The natural history of the two colonies suggested an environmental influence that, over several

generations of breeding, raised the cumulative T1D incidence in NODlow-derived mice to the

high incidence (� 90% by 30 weeks of age) found in the established NODhigh colony. Both col-

onies had comparable levels of insulitis, and PD-L1 blockade unmasked latent autoimmunity

in NODlow females, suggesting that both colonies had autoimmune potential. Transmissibility

of the differences in T1D incidence was examined co-housing NODlow and NODhigh animals.

Female offspring of co-housed NODlow animals, exposed to NODhigh-derived environmental

factors throughout their life span, developed T1D more frequently (� 50% by 30 weeks of

age), than their dams or the original NODlow colony (� 20%). In contrast, co-housed offspring

of NODhigh animals retained their high (90%) cumulative T1D incidence. Thus, the increased

T1D incidence in 2nd-generation co-housed NODlow mice was a dominant phenotype, caused

by acquisition of a transmissible factor (or factors) from the NODhigh colony.

These findings suggested an infectious cause. Indeed, the NODhigh colony harbored several

microbes absent from the NODlow colony. This included Helicobacter spp. (hepaticus and typh-
lonius), which establish persistent, asymptomatic infection in immunocompetent mice [50], as

seen here, but trigger colitis in immunodeficient models [51–54]. Prevotella copri was� 10×
more abundant in the NODhigh colony; this bacterium is also over-represented in patients with

recent-onset human rheumatoid arthritis [55]. These species may be diabetogenic in our sys-

tem. As for viruses, MNV was present only in the NODhigh colony, but there was no evidence

that it raised T1D incidence in NODhigh females (S1 Appendix). Conversely, two bacterial gen-

era were present in NODlow mice but absent from the NODhigh colony. Of these, Anaero-
plasma has been associated with protection of mice against a sex-dependent autoimmune

demyelinating disease [56]. Thus, displacement of diabetes-protective species might also con-

tribute to the increased T1D development in the NODhigh environment.

The 2nd-generation co-housed NODlow animals did not reach the very high cumulative dis-

ease incidence of female NODhigh mice (50% vs. 90% at 30 weeks). This was reminiscent of the
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Fig 6. Increased T1D incidence and acquisition of NODhigh-like B-cell phenotypes in female offspring of co-housed

NODlow mice. (A) Scheme illustrating co-housing of NODlow with NODhigh mice from 3 weeks of age, followed by breeding and

continued co-housing of offspring from their age of weaning. (B) Kaplan-Meier analysis, comparing diabetes-free survival in

females up to 30 weeks of age between the original NODlow (black circles, n = 85) and NODhigh (white circles, n = 45) colonies

(cf. Fig 1A), and between the offspring of co-housed NODlow (closed grey squares) and co-housed NODhigh (open grey

squares) mice. Survival curves for the offspring of co-housed animals were compared to the appropriate colony of origin by log

rank test. (C) Intestinal microbiota (by metagenomic analysis) at 5 weeks of age in the offspring of co-housed NODlow mice

(filled purple circles), compared with those in the original NODlow (filled orange triangles) and NODhigh (open green squares)

colonies. Principal Coordinates Analysis was performed, with the top two components displayed. Each group of mice clusters

separately, with the offspring of co-housed NODlow animals intermediate between the two original colonies. See also S1 Fig.

(D) CD69 expression in B cells from mesenteric lymph nodes (MLN), pancreatic lymph nodes (PLN), and spleens (SP)

obtained from 6-week-old NODlow females (grey full squares) and NODhigh females (grey empty squares). Group means were

compared by 2-way ANOVA with post-test for colony differences.

https://doi.org/10.1371/journal.pone.0181964.g006
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gradual rise in disease incidence over generations after the NODhigh colony was first estab-

lished. These animals acquired only some of the NODhigh–specific microbiota. Thus, multiple

diabetes-promoting and dominant-acting changes in microbial composition may be required

for the high T1D incidence of established NODhigh mice, some of which may require multiple

generations of exposure.

Is early exposure to the NODhigh-derived transmissible factor critical?

Surprisingly, we were repeatedly unable to increase T1D incidence by transferring microbiota

to NODlow mice after the age of weaning, whether by oral gavage or co-housing. Moreover,

both Helicobacter spp. and MNV were consistently found in the recipients’ feces shortly after

exposure. Thus, at least the known pathobionts were readily transmissible, presumbably by

coprophagy [57–59], and survive gastric passage to establish persistent infection.

In contrast, an increase in the frequency of T1D development was seen in the offspring of

co-housed NODlow mice. These animals experienced the diabetogenic environment through-

out their entire life span, including during gestation and/or during suckling. Thus, exposure to

the NODhigh environment may promote autoimmunity only during a critical window of sus-

ceptibility early in immune development. Thereafter, NODlow mice seem to resist the diabeto-

genic influences within the NODhigh colony.

The need for pre-weaning exposure to raise T1D incidence in our system is novel. Many

previous studies showed that microbial exposures in adulthood, well after the age of weaning,

are sufficient to affect T1D development in NOD mice [23, 24, 26, 27, 49, 60–62]. Antibiotic

treatment of pregnant NOD dams creates a simplified microbiome and increases T1D devel-

opment in their offspring [27], but that study did not examine the effects of post-weaning

exposure.

Other explanations of our data are possible. For example, the diabetogenic factor(s) might

be poorly transmissible after weaning, or slow to reach pathogenic levels in the gastrointestinal

tract, so that the exposure in the first generation of co-housing could be insufficient to raise

T1D incidence. Alternatively, increased disease incidence may require vertical transmission of

the responsible infectious agent(s) or co-transfer of host factors (such as autoantibodies) from

exposed parents to offspring, or dilution of epigenetic marks carried over from the first genera-

tion. None of these possibilities contradict the need for an early-acting environmental factor.

Moreover, as discussed further below, the immunophenotypic analysis was consistent with a

window of susceptibility early in immune development.

B-cell activation in MLN correlates with high T1D incidence

The pathogenesis of T1D involves complex interactions of many immune components, both

in rodent models and in humans [23, 63]. Thus, we explored immune correlates of the envi-

ronmental differences in T1D incidence in our system.

Classically, T1D in NOD mice and BB-DP rats has been considered to be a T cell-driven

disease [64, 65]. Many previously-described microbial modulators of NOD autoimmunity act

via Treg cells or regulatory cytokines [23]. In this study, however, we found no evidence for

major differences in T-cell phenotypes correlating with the observed colony difference in

cumulative T1D incidence. Splenic T-cell percentages and counts were similar between the

NODhigh and NODlow colonies (S4 Fig). Moreover, Treg cells were not responsible for the

colony difference in T1D development, as Treg cell frequencies did not differ between the colo-

nies, and the difference in T1D incidence persisted when Treg cells were depleted by cyclophos-

phamide [33]. In contrast, we observed a clear colony difference in mesenteric lymph nodes,

especially in B cells. MLN cell counts were increased in NODhigh mice, with increased CD69
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expression in B cells, consistent with greater activation by intestinal pathobionts. Interestingly,

this phenotype also correlated with increased T1D incidence in the offspring of cohoused

NODlow mice. The difference was clearly established by 6 weeks of age, consistent with an

early-acting environmental factor being responsible.

A mechanistic link between increased MLN B-cell activation and increased rates of T1D

development is plausible, because B cells are key mediators and regulators of autoimmunity in

general [66], and this extends to NOD mice. Genetic ablation of B cells prevents T1D [67];

antibody-mediated depletion of B cells ameliorates the disease in mice [68, 69] and delays T1D

progression in human prediabetic children [70]. Autoreactive B cells may present islet antigens

to self-reactive T cells, whereas mechanisms depending on autoantibody secretion are thought

to be less important [71–73]. NOD mice have impaired peripheral B cell tolerance at the transi-

tional check point [74], which involves BAFF (also known as BLyS), a B-cell stimulating cyto-

kine elevated in autoimmune conditions [75]. Moreover, genetic and phenotypic studies

implicate TACI, one of the BAFF receptors, in type 1 diabetes development [76]. Given the ele-

vated BAFF levels in NODhigh sera, such mechanisms may raise T1D incidence in the NODhigh

environment. Interestingly, B cells have recently been implicated in rotavirus acceleration of

T1D in NOD mice [60], though in contrast to the present study, rotavirus is diabetogenic in

adult animals.

We considered the further possibility that immune regulation by B cells might be impaired

in NODhigh mice. In the NOD strain, the characterisation of regulatory B cells (Breg cells) has

been difficult due to a paucity of informative markers [77], but IL-10-producing B cells

enriched from long-term normoglycaemic NOD mice exhibit immunoregulatory properties

[78]. To address a possible contribution of this mechanism in our system, we measured IL-10

secretion by LPS-stimulated B cells in vitro, but found no functional impairment of Breg cells

from NODhigh mice on a per-cell basis (S5 Fig).

Signalling by PD-1/PD-L1, an immunoregulatory ligand/receptor pair [79], could also be

involved. Both the ligand and the receptor are expressed on T cells and, inducibly, on B cells

[79]. We found by antibody blocking that PD-L1 signalling maintains low rates of T1D devel-

opment in NODlow mice. Similarly, previous work had shown that PD-L1 blockade unmasks

T1D in pre-diabetic NODhigh mice and reverses suppression of T1D by Salmonella typhimur-
ium [32]. PD-L1 mediates local immune regulation in pancreatic lymph nodes at a young age,

and systemic regulation in older prediabetic NOD mice [46]. Prevention of T1D in NOD mice

by PD-L1 signalling does not require B cells [46], but this does not argue against a role for B-

cell activation in our NODhigh colony.

In conclusion, the activation of B cells in NODhigh MLNs, possibly driven by interaction with

the diabetogenic factor(s) in this colony, correlates closely with increased T1D development due

to the NODhigh-derived diabetogenic factor(s). This phenotype emerges at a young age, consistent

with the early window of susceptibility, and may be related to increased BAFF levels in NODhigh

sera, PD-1/PD-L1 signalling, or both. Further work is required to address these possibilities.

A hierarchy of microbial influences on progression to T1D?

This study revealed unexpected complexity in the environmental regulation of T1D. First, our

observations do not fit well with the Hygiene Hypothesis (cf. Introduction): NODhigh mice

exhibit high T1D incidence despite harbouring a somewhat more complex microbiome

(including several pathobionts) than NODlow mice. Rather, the NODhigh microbiome includes

a novel, dominant-acting transmissible factor(s), raising T1D incidence. This adds to the

many known microbial and viral influences that promote or inhibit autoimmunity (cf.

Introduction).
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Surprisingly, NODhigh mice exhibited their high T1D incidence despite harbouring SFB. Pre-

vious work had correlated SFB colonisation with low rates of T1D development [22], suggesting

a dominant suppressive effect of SFB. The suppressive effect in T1D contrasts with the ability of

SFB to enhance Th17-driven autoimmunity in other models [80], and has been linked to altered

Th1/Th17 balance in the intestine. In our studies, SFB suppression of T1D in NODlow mice

seems to be overcome by the diabetogenic NODhigh-derived environmental factor(s).

Taken together with prior literature, our findings suggest a hierarchy of diabetes-promoting

and suppressive influences, each acting via distinct immune mechanisms. In order from low to

high microbial complexity and dominance, these are, at a minimum: sex-independent high inci-

dence in germ-free mice [24]; sex-dependent metabolomic influences of microbiota, suppress-

ing T1D in male mice [24]; Th1-to-Th17 cytokine deviation by SFB, suppressing T1D in

females [22]; the NODhigh-derived environmental factor(s), which stimulate(s) mesenteric LN B

cells and raises female T1D incidence (this study); and the T1D-suppressive influences of IL-10

production stimulated by parasites, or of PD-L1 signalling stimulated by Salmonella in NODhigh

mice [20, 21]. This mechanistic diversity is further supported by the different developmental

windows of susceptibility to diabetes-promoting and -suppressive influences, discussed above.

Translational implications

Environmental influences on autoimmunity differ between humans and mice, but parallels

may exist. As in mice, human T1D is associated with altered intestinal microbiota (cf. Intro-

duction), and infections influence T1D risk (reviewed in [23]). As in our present study of

NOD mice, dominance hierarchies may also characterize environmental influences on human

autoimmunity, acting via different immune mechanisms, with some only being effective dur-

ing a particular developmental window of susceptibility. This may complicate health prognoses

based on the composition of intestinal microbiota: if the presence of some microbial species

may exert dominant effects, additive models of these influences are insufficient. The possible

role of local B-cell activation in the environmental regulation of T1D development merits fur-

ther study, both in mice and humans. Importantly, our data show that some diabetogenic envi-

ronmental factors may be acquired asymptomatically by older recipients, without altering

their own disease outcomes, yet may increase the potential for autoimmunity if acquired early

enough in life and/or transmitted vertically to future generations. If the same applies to

humans, this would complicate the identification of viral or microbial species that regulate

autoimmunity. It also would raise the possibility of unforeseen autoimmune complications in

the children of patients who have received fecal transplants, an emerging therapy for intracta-

ble infections, such as antibiotic-resistant Clostridium difficile, and for other inflammatory dis-

eases [81].

Concluding remarks

The ‘Hygiene Hypothesis’ no longer seems sufficient to account for the complex hierarchy of

immune mechanisms by which multiple microbial and viral factors influence T1D develop-

ment. Developmental timing and the role of B-cell activation must be considered when consid-

ering microbial regulation of T1D. Potentially, human parents could transmit an increased

risk of autoimmunity to their offspring upon vertical transmission of infectious agents

acquired asymptomatically.

Supporting information

S1 Appendix. Further experiments on the possibility of a diabetogenic effect of MNV. Con-

tains brief introduction, methods, results and discussion of experiments showing that MNV
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infection of NODlow mice fails to raise their low T1D incidence.

(PDF)

S1 Fig. Abundance of selected intestinal bacteria in individual mice assessed by high-

throughput sequencing. Counts for specific bacterial 16S rRNA gene sequences were normal-

ized by sequencing depth, showing significant differences in any pairwise comparisons of

intestinal bacterial composition between 5-week-old female NODhigh mice (green open

squares), NODlow mice (orange closed triangles), and the offspring of NODlow mice co-housed

with NODhigh mice (LowBornHigh, purple closed circles). Data for individual mice and means

are shown for each group.

(PDF)

S2 Fig. Increased BAFF levels in the serum of NODhigh mice. BAFF concentrations in the

sera of NODlow (closed circles) and NODhigh (open circles) assessed by ELISA. Sera from indi-

vidual mice are shown, and means were compared by Student’s t test.

(PDF)

S3 Fig. Three-week-old NODlow female weanlings acquire H. hepaticus following oral

gavage. Gel electrophoresis showing PCR amplification of H. hepaticus genomic DNA isolated

from feces of NODlow mice orally gavaged at weaning (3 weeks old) with a fecal suspension

obtained from 12-week-old pre-diabetic NODhigh females. Lane 1: DNA marker; lane 2: nega-

tive control; lanes 3 and 4: representative NODlow recipients.

(PDF)

S4 Fig. Similar T-cell frequencies and absolute counts in splenocytes from NODlow and

NODhigh mice. Splenocytes were obtained from six-week-old female mice from both colonies

(n = 8 each), counted, stained for CD3, and analysed by flow cytometry. Percentages (left) and

absolute counts (right) of CD3+ T cells are shown for individual NODlow (black circles) and

NODhigh (white circles) animals; horizontal bars represent means.

(PDF)

S5 Fig. Similar IL-10 secretion by LPS-stimulated splenic B cells from NODlow and

NODhigh mice. Splenocytes were obtained from six-week-old female mice from both colo-

nies and used for immunomagnetic (MACS) enrichment of B cells to high purity (> 97%

CD19+B220+; (A)). IL-10 release following stimulation with LPS (10 μg/ml) was quantified

by ELISA (B). Data are shown for individual NODlow (black circles) and NODhigh (white

circles) animals; horizontal bars represent means.

(PDF)
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