247 research outputs found

    COVID-19: looking beyond the peak. Challenges and tips for radiologists in follow-up of a novel patient cohort

    Get PDF
    As the coronavirus pandemic evolves, the focus of radiology departments has begun to change. The acute phase of imaging a new disease entity whilst rationalising radiology services in the face of lockdown has passed. Radiologists are now becoming familiar with the complications of COVID-19, particularly the lung parenchymal and pulmonary vascular sequelae and are considering the impact follow-up imaging may have on departments already struggling with a backlog of suspended imaging in the face of reduced capacity. This review from the British Society of Thoracic Imaging explores both the thoracic and extra-thoracic complications of COVID-19, recognising the importance of a holistic approach to patient follow-up. The British Thoracic Society guidelines for respiratory follow-up of COVID-19 will be discussed, together with newly developed reporting templates, which aim to provide consistency for clinicians as well as an opportunity for longer-term data collection

    Muscle atrophy phenotype gene expression during spaceflight is linked to a metabolic crosstalk in both the liver and the muscle in mice

    Get PDF
    Human expansion in space is hampered by the physiological risks of spaceflight. The muscle and the liver are among the most affected tissues during spaceflight and their relationships in response to space exposure have never been studied. We compared the transcriptome response of liver and quadriceps from mice on NASA RR1 mission, after 37 days of exposure to spaceflight using GSEA, ORA, and sparse partial least square-differential analysis. We found that lipid metabolism is the most affected biological process between the two organs. A specific gene cluster expression pattern in the liver strongly correlated with glucose sparing and an energy-saving response affecting high energy demand process gene expression such as DNA repair, autophagy, and translation in the muscle. Our results show that impaired lipid metabolism gene expression in the liver and muscle atrophy gene expression are two paired events during spaceflight, for which dietary changes represent a possible countermeasure

    Prevalence and dynamics of ribosomal DNA micro-heterogeneity are linked to population history in two contrasting yeast species

    Get PDF
    Despite the considerable number and taxonomic breadth of past and current genome sequencing projects, many of which necessarily encompass the ribosomal DNA, detailed information on the prevalence and evolutionary significance of sequence variation in this ubiquitous genomic region are severely lacking. Here, we attempt to address this issue in two closely related yet contrasting yeast species, the baker's yeast Saccharomyces cerevisiae and the wild yeast Saccharomyces paradoxus. By drawing on existing datasets from the Saccharomyces Genome Resequencing Project, we identify a rich seam of ribosomal DNA sequence variation, characterising 1,068 and 970 polymorphisms in 34 S. cerevisiae and 26 S. paradoxus strains respectively. We discover the two species sets exhibit distinct mutational profiles. Furthermore, we show for the first time that unresolved rDNA sequence variation resulting from imperfect concerted evolution of the ribosomal DNA region follows a U-shaped allele frequency distribution in each species, similar to loci that evolve under non-concerted mechanisms but arising through rather different evolutionary processes. Finally, we link differences between the shapes of these allele frequency distributions to the two species' contrasting population histories

    Special and inclusive education in the Republic of Ireland: reviewing the literature from 2000 to 2009

    Get PDF
    Provision for pupils with special educational needs in Ireland has undergone considerable change and review in the first decade of the twenty first century. In response to international demands for a more equitable education system which recognises diversity and considers how schools might address the needs of pupils who have been previously marginalised, Irish legislation has focused upon the development of inclusive schooling. Researchers during this period have endeavoured to understand how responses to the demand for greater inclusion have impacted upon the perceived need for change. This paper reviews the research literature for this period and identifies four key themes under which research has been conducted. The literature pertaining to these themes is explored and a possible agenda for future researchers identifie

    Rapid and efficient cancer cell killing mediated by high-affinity death receptor homotrimerizing TRAIL variants

    Get PDF
    The tumour necrosis factor family member TNF-related apoptosis-inducing ligand (TRAIL) selectively induces apoptosis in a variety of cancer cells through the activation of death receptors 4 (DR4) and 5 (DR5) and is considered a promising anticancer therapeutic agent. As apoptosis seems to occur primarily via only one of the two death receptors in many cancer cells, the introduction of DR selectivity is thought to create more potent TRAIL agonists with superior therapeutic properties. By use of a computer-aided structure-based design followed by rational combination of mutations, we obtained variants that signal exclusively via DR4. Besides an enhanced selectivity, these TRAIL-DR4 agonists show superior affinity to DR4, and a high apoptosis-inducing activity against several TRAIL-sensitive and -resistant cancer cell lines in vitro. Intriguingly, combined treatment of the DR4-selective variant and a DR5-selective TRAIL variant in cancer cell lines signalling by both death receptors leads to a significant increase in activity when compared with wild-type rhTRAIL or each single rhTRAIL variant. Our results suggest that TRAIL induced apoptosis via high-affinity and rapid-selective homotrimerization of each DR represent an important step towards an efficient cancer treatment

    The involvement of tau in nucleolar transcription and the stress response

    Get PDF
    Tau is known for its pathological role in neurodegenerative diseases, including Alzheimer’s disease (AD) and other tauopathies. Tau is found in many subcellular compartments such as the cytosol and the nucleus. Although its normal role in microtubule binding is well established, its nuclear role is still unclear. Here, we reveal that tau localises to the nucleolus in undifferentiated and differentiated neuroblastoma cells (SHSY5Y), where it associates with TIP5, a key player in heterochromatin stability and ribosomal DNA (rDNA) transcriptional repression. Immunogold labelling on human brain sample confirms the physiological relevance of this finding by showing tau within the nucleolus colocalises with TIP5. Depletion of tau results in an increase in rDNA transcription with an associated decrease in heterochromatin and DNA methylation, suggesting that under normal conditions tau is involved in silencing of the rDNA. Cellular stress induced by glutamate causes nucleolar stress associated with the redistribution of nucleolar non-phosphorylated tau, in a similar manner to fibrillarin, and nuclear upsurge of phosphorylated tau (Thr231) which doesn’t colocalise with fibrillarin or nucleolar tau. This suggests that stress may impact on different nuclear tau species. In addition to involvement in rDNA transcription, nucleolar non-phosphorylated tau also undergoes stress-induced redistribution similar to many nucleolar protein

    A Whole Cell Assay to Measure Caspase-6 Activity by Detecting Cleavage of Lamin A/C

    Get PDF
    Caspase-6 is a cysteinyl protease implicated in neurodegenerative conditions including Alzheimer's and Huntington's disease making it an attractive target for therapeutic intervention. A greater understanding of the role of caspase-6 in disease has been hampered by a lack of suitable cellular assays capable of specifically detecting caspase-6 activity in an intact cell environment. This is mainly due to the use of commercially available peptide substrates and inhibitors which lack the required specificity to facilitate development of this type of assay. We report here a 384-well whole-cell chemiluminescent ELISA assay that monitors the proteolytic degradation of endogenously expressed lamin A/C during the early stages of caspase-dependent apoptosis. The specificity of lamin A/C proteolysis by caspase-6 was demonstrated against recombinant caspase family members and further confirmed in genetic deletion studies. In the assay, plasma membrane integrity remained intact as assessed by release of lactate dehydrogenase from the intracellular environment and the exclusion of cell impermeable peptide inhibitors, despite the induction of an apoptotic state. The method described here is a robust tool to support drug discovery efforts targeting caspase-6 and is the first reported to specifically monitor endogenous caspase-6 activity in a cellular context
    corecore