1,153 research outputs found

    Investigation of the difficulties associated with the use of lead telluride and other II - IV compounds for thin film thermistors

    Get PDF
    The fabrication of thermistors was investigated for use as atmospheric temperature sensors in meteorological rocket soundings. The final configuration of the thin film thermistor is shown. The composition and primary functions of the six layers of the sensor are described. A digital controller for thin film deposition control is described which is capable of better than .1 A/sec rate control. The computer program modules for digital control of thin film deposition processing are included

    Interactions between parental traits, environmental harshness and growth rate in determining telomere length in wild juvenile salmon

    Get PDF
    A larger body size confers many benefits, such as increased reproductive success, ability to evade predators and increased competitive ability and social status. However, individuals rarely maximise their growth rates, suggesting that this carries costs. One such cost could be faster attrition of the telomeres that cap the ends of eukaryotic chromosomes and play an important role in chromosome protection. A relatively short telomere length is indicative of poor biological state, including poorer tissue and organ performance, reduced potential longevity and increased disease susceptibility. Telomere loss during growth may also be accelerated by environmental factors, but these have rarely been subjected to experimental manipulation in the natural environment. Using a wild system involving experimental manipulations of juvenile Atlantic salmon Salmo salar in Scottish streams, we found that telomere length in juvenile fish was influenced by parental traits and by direct environmental effects. We found that faster-growing fish had shorter telomeres and there was a greater cost (in terms of reduced telomere length) if the growth occurred in a harsher environment. We also found a positive association between offspring telomere length and the growth history of their fathers (but not mothers), represented by the number of years fathers had spent at sea. This suggests that there may be long term consequences of growth conditions and parental life history for individual longevity

    A dynamical theory of homogeneous nucleation for colloids and macromolecules

    Full text link
    Homogeneous nucleation is formulated within the context of fluctuating hydrodynamics. It is shown that for a colloidal or macromolecular system in the strong damping limit the most likely path for nucleation can be determined by gradient descent in density space governed by a nontrivial metric fixed by the dynamics. The theory provides a justification and extension of more heuristic equilibrium approaches based solely on the free energy. It is illustrated by application to liquid-vapor nucleation where it is shown that, in contrast to most free energy-based studies, the smallest clusters correspond to long wavelength, small amplitude perturbations.Comment: final version; 4 pages, 2 figure

    Kinetic Theory of Response Functions for the Hard Sphere Granular Fluid

    Full text link
    The response functions for small spatial perturbations of a homogeneous granular fluid have been described recently. In appropriate dimensionless variables, they have the form of stationary state time correlation functions. Here, these functions are expressed in terms of reduced single particle functions that are expected to obey a linear kinetic equation. The functional assumption required for such a kinetic equation, and a Markov approximation for its implementation are discussed. If, in addition, static velocity correlations are neglected, a granular fluid version of the linearized Enskog kinetic theory is obtained. The derivation makes no a priori limitation on the density, space and time scale, nor degree of inelasticity. As an illustration, recently derived Helfand and Green-Kubo expressions for the Navier-Stokes order transport coefficients are evaluated with this kinetic theory. The results are in agreement with those obtained from the Chapman-Enskog solution to the nonlinear Enskog kinetic equation.Comment: Submitted to J. Stat. Mec

    Transport properties of dense dissipitive hard-sphere fluids for arbitrary energy loss models

    Full text link
    The revised Enskog approximation for a fluid of hard spheres which lose energy upon collision is discussed for the case that the energy is lost from the normal component of the velocity at collision but is otherwise arbitrary. Granular fluids with a velocity-dependent coefficient of restitution are an important special case covered by this model. A normal solution to the Enskog equation is developed using the Chapman-Enskog expansion. The lowest order solution describes the general homogeneous cooling state and a generating function formalism is introduced for the determination of the distribution function. The first order solution, evaluated in the lowest Sonine approximation, provides estimates for the transport coefficients for the Navier-Stokes hydrodynamic description. All calculations are performed in an arbitrary number of dimensions.Comment: 27 pages + 1 figur

    Integration through transients for Brownian particles under steady shear

    Full text link
    Starting from the microscopic Smoluchowski equation for interacting Brownian particles under stationary shearing, exact expressions for shear-dependent steady-state averages, correlation and structure functions, and susceptibilities are obtained, which take the form of generalized Green-Kubo relations. They require integration of transient dynamics. Equations of motion with memory effects for transient density fluctuation functions are derived from the same microscopic starting point. We argue that the derived formal expressions provide useful starting points for approximations in order to describe the stationary non-equilibrium state of steadily sheared dense colloidal dispersions.Comment: 17 pages, Submitted to J. Phys.: Condens. Matter; revised version with minor correction

    Neural crest migration is driven by a few trailblazer cells with a unique molecular signature narrowly confined to the invasive front

    Get PDF
    Neural crest (NC) cell migration is crucial to the formation of peripheral tissues during vertebrate development. However, how NC cells respond to different microenvironments to maintain persistence of direction and cohesion in multicellular streams remains unclear. To address this, we profiled eight subregions of a typical cranial NC cell migratory stream. Hierarchical clustering showed significant differences in the expression profiles of the lead three subregions compared with newly emerged cells. Multiplexed imaging of mRNA expression using fluorescent hybridization chain reaction (HCR) quantitatively confirmed the expression profiles of lead cells. Computational modeling predicted that a small fraction of lead cells that detect directional information is optimal for successful stream migration. Single-cell profiling then revealed a unique molecular signature that is consistent and stable over time in a subset of lead cells within the most advanced portion of the migratory front, which we term trailblazers. Model simulations that forced a lead cell behavior in the trailing subpopulation predicted cell bunching near the migratory domain entrance. Misexpression of the trailblazer molecular signature by perturbation of two upstream transcription factors agreed with the in silico prediction and showed alterations to NC cell migration distance and stream shape. These data are the first to characterize the molecular diversity within an NC cell migratory stream and offer insights into how molecular patterns are transduced into cell behaviors

    Nonequilibrium fluctuation dissipation relations of interacting Brownian particles driven by shear

    Full text link
    We present a detailed analysis of the fluctuation dissipation theorem (FDT) close to the glass transition in colloidal suspensions under steady shear using mode coupling approximations. Starting point is the many-particle Smoluchowski equation. Under shear, detailed balance is broken and the response functions in the stationary state are smaller at long times than estimated from the equilibrium FDT. An asymptotically constant relation connects response and fluctuations during the shear driven decay, restoring the form of the FDT with, however, a ratio different from the equilibrium one. At short times, the equilibrium FDT holds. We follow two independent approaches whose results are in qualitative agreement. To discuss the derived fluctuation dissipation ratios, we show an exact reformulation of the susceptibility which contains not the full Smoluchowski operator as in equilibrium, but only its well defined Hermitian part. This Hermitian part can be interpreted as governing the dynamics in the frame comoving with the probability current. We present a simple toy model which illustrates the FDT violation in the sheared colloidal system.Comment: 21 pages, 13 figures, submitted to Phys. Rev.

    A note on the violation of the Einstein relation in a driven moderately dense granular gas

    Full text link
    The Einstein relation for a driven moderately dense granular gas in dd-dimensions is analyzed in the context of the Enskog kinetic equation. The Enskog equation neglects velocity correlations but retains spatial correlations arising from volume exclusion effects. As expected, there is a breakdown of the Einstein relation ϵ=D/(T0μ)≠1\epsilon=D/(T_0\mu)\neq 1 relating diffusion DD and mobility μ\mu, T0T_0 being the temperature of the impurity. The kinetic theory results also show that the violation of the Einstein relation is only due to the strong non-Maxwellian behavior of the reference state of the impurity particles. The deviation of ϵ\epsilon from unity becomes more significant as the solid volume fraction and the inelasticity increase, especially when the system is driven by the action of a Gaussian thermostat. This conclusion qualitatively agrees with some recent simulations of dense gases [Puglisi {\em et al.}, 2007 {\em J. Stat. Mech.} P08016], although the deviations observed in computer simulations are more important than those obtained here from the Enskog kinetic theory. Possible reasons for the quantitative discrepancies between theory and simulations are discussed.Comment: 6 figure

    A note on the Landauer principle in quantum statistical mechanics

    Full text link
    The Landauer principle asserts that the energy cost of erasure of one bit of information by the action of a thermal reservoir in equilibrium at temperature T is never less than kTlog2kTlog 2. We discuss Landauer's principle for quantum statistical models describing a finite level quantum system S coupled to an infinitely extended thermal reservoir R. Using Araki's perturbation theory of KMS states and the Avron-Elgart adiabatic theorem we prove, under a natural ergodicity assumption on the joint system S+R, that Landauer's bound saturates for adiabatically switched interactions. The recent work of Reeb and Wolf on the subject is discussed and compared
    • …
    corecore