426 research outputs found

    Progress Towards a Multi-Modal Capsule Endoscopy Device Featuring Microultrasound Imaging

    Get PDF
    Current clinical standards for endoscopy in the gastrointestinal (GI) tract combine high definition optics and ultrasound imaging to view the lumen superficially and through its thickness. However, these instruments are limited to the length of an endoscope and the only clinically available, autonomous devices able to travel the full length of the GI tract easily offer only video capsule endoscopy (VCE). Our work seeks to overcome this limitation with a device (“Sonopill”) for multimodal capsule endoscopy, providing optical and microultrasound (μUS) imaging and supporting sensors1. μUS transducers have been developed with multiple piezoelectric materials operating across a range of centre frequencies to study viability in the GI tract. Because of the combined constraints of μUS imaging and the low power / heat tolerance of autonomous devices, a hybrid approach has been taken to the transducer design, with separate transmit and receive arrays allowing multiple manufacturing approaches to maximise system efficiency. To explore these approaches fully, prototype devices have been developed with PVDF, high-frequency PZT and PMN-PT composites, and piezoelectric micromachined ultrasonic transducer arrays. Test capsules have been developed using 3D printing to investigate issues including power consumption, heat generation / dissipation, acoustic coupling, signal strength and capsule integrity. Because of the high functional density of the electronics in our proposed system, application specific integrated circuits (ASICs) have been developed to realise the ultrasound transmit and receive circuitry along with white-light and autofluorescence imaging with single-photon avalanche detectors (SPADs). The ultrasound ASIC has been developed and the SPAD electronics and optical subsystem have been validated experimentally. The functionality of various transducer materials has been examined as a function of frequency and ultrasound transducers have been developed to operate at centre frequencies in the range 15 - 50 MHz. Ex vivo testing of porcine tissue has been performed, generating images of interest to the clinical community, demonstrating the viability of the Sonopill concept

    High-resolution x-ray telescopes

    Full text link
    High-energy astrophysics is a relatively young scientific field, made possible by space-borne telescopes. During the half-century history of x-ray astronomy, the sensitivity of focusing x-ray telescopes-through finer angular resolution and increased effective area-has improved by a factor of a 100 million. This technological advance has enabled numerous exciting discoveries and increasingly detailed study of the high-energy universe-including accreting (stellar-mass and super-massive) black holes, accreting and isolated neutron stars, pulsar-wind nebulae, shocked plasma in supernova remnants, and hot thermal plasma in clusters of galaxies. As the largest structures in the universe, galaxy clusters constitute a unique laboratory for measuring the gravitational effects of dark matter and of dark energy. Here, we review the history of high-resolution x-ray telescopes and highlight some of the scientific results enabled by these telescopes. Next, we describe the planned next-generation x-ray-astronomy facility-the International X-ray Observatory (IXO). We conclude with an overview of a concept for the next next-generation facility-Generation X. The scientific objectives of such a mission will require very large areas (about 10000 m2) of highly-nested lightweight grazing-incidence mirrors with exceptional (about 0.1-arcsecond) angular resolution. Achieving this angular resolution with lightweight mirrors will likely require on-orbit adjustment of alignment and figure.Comment: 19 pages, 11 figures, SPIE Conference 7803 "Adaptive X-ray Optics", part of SPIE Optics+Photonics 2010, San Diego CA, 2010 August 2-

    Effect of synthesis conditions on formation pathways of metal organic framework (MOF-5) Crystals

    Get PDF
    Metal Organic Frameworks (MOFs) represent a class of nanoporous crystalline materials with far reaching potential in gas storage, catalysis, and medical devices. We investigated the effects of synthesis process parameters on production of MOF-5 from terephthalic acid and zinc nitrate in diethylformamide. Under favorable synthesis conditions, we systematically mapped a solid formation diagram in terms of time and temperature for both stirred and unstirred conditions. The synthesis of MOF-5 has been previously reported as a straightforward reaction progressing from precursor compounds in solution directly to the final MOF-5 solid phase product. However, we show that the solid phase formation process is far more complex, invariably transferring through metastable intermediate crystalline phases before the final MOF-5 phase is reached, providing new insights into the formation pathways of MOFs. We also identify process parameters suitable for scale-up and continuous manufacturing of high purity MOF-5

    Implementing telephone triage in general practice: a process evaluation of a cluster randomised controlled trial

    Get PDF
    Background: Telephone triage represents one strategy to manage demand for face-to-face GP appointments in primary care. However, limited evidence exists of the challenges GP practices face in implementing telephone triage. We conducted a qualitative process evaluation alongside a UK-based cluster randomised trial (ESTEEM) which compared the impact of GP-led and nurse-led telephone triage with usual care on primary care workload, cost, patient experience, and safety for patients requesting a same-day GP consultation. The aim of the process study was to provide insights into the observed effects of the ESTEEM trial from the perspectives of staff and patients, and to specify the circumstances under which triage is likely to be successfully implemented. Here we report perspectives of staff. Methods: The intervention comprised implementation of either GP-led or nurse-led telephone triage for a period of 2-3 months. A qualitative evaluation was conducted using staff interviews recruited from eight general practices (4 GP triage, 4 Nurse triage) in the UK, implementing triage as part of the ESTEEM trial. Qualitative interviews were undertaken with 44 staff members in GP triage and nurse triage practices (16 GPs, 8 nurses, 7 practice managers, 13 administrative staff). Results: Staff reported diverse experiences and perceptions regarding the implementation of telephone triage, its effects on workload, and on the benefits of triage. Such diversity were explained by the different ways triage was organised, the staffing models used to support triage, how the introduction of triage was communicated across practice staff, and by how staff roles were reconfigured as a result of implementing triage. Conclusion: The findings from the process evaluation offer insight into the range of ways GP practices participating in ESTEEM implemented telephone triage, and the circumstances under which telephone triage can be successfully implemented beyond the context of a clinical trial. Staff experiences and perceptions of telephone triage are shaped by the way practices communicate with staff, prepare for and sustain the changes required to implement triage effectively, as well as by existing practice culture, and staff and patient behaviour arising in response to the changes made. Trial registration: Current Controlled Trials ISRCTN20687662. Registered 28 May 2009

    Pathway to the PiezoElectronic Transduction Logic Device

    Full text link
    The information age challenges computer technology to process an exponentially increasing computational load on a limited energy budget - a requirement that demands an exponential reduction in energy per operation. In digital logic circuits, the switching energy of present FET devices is intimately connected with the switching voltage, and can no longer be lowered sufficiently, limiting the ability of current technology to address the challenge. Quantum computing offers a leap forward in capability, but a clear advantage requires algorithms presently developed for only a small set of applications. Therefore, a new, general purpose, classical technology based on a different paradigm is needed to meet the ever increasing demand for data processing.Comment: in Nano Letters (2015

    Si-compatible candidates for high-K dielectrics with the Pbnm perovskite structure

    Full text link
    We analyze both experimentally (where possible) and theoretically from first-principles the dielectric tensor components and crystal structure of five classes of Pbnm perovskites. All of these materials are believed to be stable on silicon and are therefore promising candidates for high-K dielectrics. We also analyze the structure of these materials with various simple models, decompose the lattice contribution to the dielectric tensor into force constant matrix eigenmode contributions, explore a peculiar correlation between structural and dielectric anisotropies in these compounds and give phonon frequencies and infrared activities of those modes that are infrared-active. We find that CaZrO_3, SrZrO_3, LaHoO_3, and LaYO_3 are among the most promising candidates for high-K dielectrics among the compounds we considered.Comment: 17 pages, 9 figures, 4 tables. Supplementary information: http://link.aps.org/supplemental/10.1103/PhysRevB.82.064101 or http://www.physics.rutgers.edu/~sinisa/highk/supp.pd
    corecore