2,734 research outputs found

    Space activities in Glasgow; advanced microspacecraft from Scotland

    Get PDF
    The City of Glasgow is renowned for its engineering and technological innovation; famous Glaswegian inventors and academics include James Watt (Steam Engine) and John Logie Baird (television), amongst many others. Contemporary Glasgow continues to pioneer and invent in a multitude of areas of science and technology and has become a centre of excellence in many fields of engineering; including spacecraft engineering. This paper will discuss how Clyde Space Ltd and the space groups at both Glasgow and Strathclyde Universities are combining their knowledge and expertise to develop an advanced microspacecraft platform that will enable a step change in the utility value of miniature spacecraft. The paper will also explore how the relationship between the academic and industrial partners works in practice and the steps that have been taken to harness resulting innovation to create space industry jobs within a city that was, until recently, void of any commercial space activity

    Chrono: A System for Normalizing Temporal Expressions

    Get PDF
    The Chrono System: Chrono is a hybrid rule-based and machine learning system written in Python and built from the ground up to identify temporal expressions in text and normalizes them into the SCATE schema. Input text is preprocessed using Python’s NLTK package, and is run through each of the four primary modules highlighted here. Note that Chrono does not remove stopwords because they add temporal information and context, and Chrono does not tokenize sentences. Output is an Anafora XML file with annotated SCATE entities. After minor parsing logic adjustments, Chrono has emerged as the top performing system for SemEval 2018 Task 6. Chrono is available on GitHub at https://github.com/AmyOlex/Chrono. Future Work: Chrono is still under development. Future improvements will include: additional entity parsing, like “event”; evaluating the impact of sentence tokenization; implement an ensemble ML module that utilizes all four ML methods for disambiguation; extract temporal phrase parsing algorithm to be stand-alone and compare to similar systems; evaluate performance on THYME medical corpus; migrate to UIMA framework and implement Ruta Rules for portability and easier customization

    A novel interplanetary communications relay

    Get PDF
    A case study of a potential Earth-Mars interplanetary communications relay, designed to ensure continuous communications, is detailed. The relay makes use of orbits based on artificial equilibrium points via the application of continuous low thrust, which allows a spacecraft to hover above the orbital plane of Mars and thus ensure communications when the planet is occulted with respect to the Earth. The artificial equilibria of two different low-thrust propulsion technologies are considered: solar electric propulsion, and a solar sail/solar electric propulsion hybrid. In the latter case it is shown that the combination of sail and solar electric propulsion may prove advantageous, but only under specific circumstances of the relay architecture suggested. The study takes into account factors such as the spacecraft's power requirements and communications band utilized to determine the mission and system architecture. A detailed contingency analysis is considered for recovering the relay after increasing periods of spacecraft motor failure, and combined with a consideration for how best to deploy the relay spacecraft to maximise propellant reserves and mission duration

    Inaccessible Singularities in Toral Cosmology

    Get PDF
    The familiar Bang/Crunch singularities of classical cosmology have recently been augmented by new varieties: rips, sudden singularities, and so on. These tend to be associated with final states. Here we consider an alternative possibility for the initial state: a singularity which has the novel property of being inaccessible to physically well-defined probes. These singularities arise naturally in cosmologies with toral spatial sections.Comment: 10 pages, version to appear in Classical and Quantum Gravit

    The philosophical basis of aesthetic criticism.

    Get PDF

    Invariant manifolds and orbit control in the solar sail three-body problem

    Get PDF
    In this paper we consider issues regarding the control and orbit transfer of solar sails in the circular restricted Earth-Sun system. Fixed points for solar sails in this system have the linear dynamical properties of saddles crossed with centers; thus the fixed points are dynamically unstable and control is required. A natural mechanism of control presents itself: variations in the sail's orientation. We describe an optimal controller to control the sail onto fixed points and periodic orbits about fixed points. We find this controller to be very robust, and define sets of initial data using spherical coordinates to get a sense of the domain of controllability; we also perform a series of tests for control onto periodic orbits. We then present some mission strategies involving transfer form the Earth to fixed points and onto periodic orbits, and controlled heteroclinic transfers between fixed points on opposite sides of the Earth. Finally we present some novel methods to finding periodic orbits in circumstances where traditional methods break down, based on considerations of the Center Manifold theorem

    The Legume – Rhizobia Symbiosis. Does It Vary for the Tropics Relative to the Mediterranean Basin?

    Get PDF
    Symbiotic N fixation from legumes is one of the most important biological processes on the planet. It currently provides the majority of the N requirement in agriculture, yet will have to double if cereal crop production is to meet world demand by 2020 (Kennedy and Cocking 1997). To effectively harness the value of biological N fixation from legumes we need to more fully understand G2 x E; where G refers to the genotypes of both the legume (Gl) and its microsymbiont (rhizobia; Gr), and E refers to the edaphic environment in which the symbiosis is to function. In the Mediterranean basin, indigenous legumes are nodulated by specific rhizobial genotypes. Despite co-evolution of the symbionts, their relationship is not always optimal for N fixation. It has been proposed that rhizobial genotypes are differentially adapted to soil conditions and that it is this adaptation, rather than the relationship with their host, that most strongly governs outcomes relating to competition and persistence (Sprent 1994, Howieson 2000). Expressed in terms of the above formula, symbiotic effectiveness (G2) is unimportant to the persistence and success of rhizobia relative to adaptation of the rhizobia to soil and climate (Gr x E). In this paper we investigate whether rhizobia which have co-evolved with tropical legumes show similar sub-optimal patterns of N fixation. Tropical legumes differ from Mediterranean legumes in that many nodulate promiscuously, and often effectively, with a broad range of rhizobial genotypes (both rhizobia and bradyrhizobia). This introduces the possibility that impacts of soil and climate on the persistence and success of some tropical rhizobia (Gr x E) are less important for optimal N fixation (G2) than they are in the Mediterranean region. However, observations on N fixation in promiscuous tropical legumes are mostly based on agricultural species associated with rhizobia from outside the centre of origin of the host legume. We examine N fixation by tropical rhizobia which have co-evolved with their host. We show that sub-optimal N fixation can be improved using several research options, the choice of which depends on the nature of the limitation to the legume or the performance of the rhizobia. We describe three scenarios that might compromise N fixation: a) where the legume is sown into soil containing a high population of variably effective rhizobia, b) where the rhizobial population is low, and c) where there is no background population of rhizobia capable of nodulation with the legume. Each scenario has presented with it several research strategies for improving symbiotic N fixation. These strategies have application for both Mediterranean and tropical environments

    Asymptotic analysis of displaced lunar orbits

    Get PDF
    The design of spacecraft trajectories is a crucial task in space mission design. Solar sail technology appears as a promising form of advanced spacecraft propulsion which can enable exciting new space science mission concepts such as solar system exploration and deep space observation. Although solar sailing has been considered as a practical means of spacecraft propulsion only relatively recently, the fundamental ideas are by no means new (see McInnes1 for a detailed description). A solar sail is propelled by reflecting solar photons and therefore can transform the momentum of the photons into a propulsive force. Solar sails can also be utilised for highly non-Keplerian orbits, such as orbits displaced high above the ecliptic plane (see Waters and McInnes2). Solar sails are especially suited for such non-Keplerian orbits, since they can apply a propulsive force continuously. In such trajectories, a sail can be used as a communication satellite for high latitudes. For example, the orbital plane of the sail can be displaced above the orbital plane of the Earth, so that the sail can stay fixed above the Earth at some distance, if the orbital periods are equal (see Forward3). Orbits around the collinear points of the Earth-Moon system are also of great interest because their unique positions are advantageous for several important applications in space mission design (see e.g. Szebehely4, Roy,5 Vonbun,6 Thurman et al.,7 Gomez et al.8, 9). Several authors have tried to determine more accurate approximations (quasi-Halo orbits) of such equilibrium orbits10. These orbits were first studied by Farquhar11, Farquhar and Kamel10, Breakwell and Brown12, Richardson13, Howell14, 15.If an orbit maintains visibility from Earth, a spacecraft on it (near the L2 point) can be used to provide communications between the equatorial regions of the Earth and the lunar poles. The establishment of a bridge for radio communications is crucial for forthcoming space missions, which plan to use the lunar poles.McInnes16 investigated a new family of displaced solar sail orbits near the Earth-Moon libration points.Displaced orbits have more recently been developed by Ozimek et al.17 using collocation methods. In Baoyin and McInnes18, 19, 20 and McInnes16, 21, the authors describe new orbits which are associated with artificial Lagrange points in the Earth-Sun system. These artificial equilibria have potential applications for future space physics and Earth observation missions. In McInnes and Simmons22, the authors investigate large new families of solar sail orbits, such as Sun-centered halo-type trajectories, with the sail executing a circular orbit of a chosen period above the ecliptic plane. We have recently investigated displaced periodic orbits at linear order in the Earth-Moon restricted three-body system, where the third massless body is a solar sail (see Simo and McInnes23). These highly non-Keplerian orbits are achieved using an extremely small sail acceleration. It was found that for a given displacement distance above/below the Earth-Moon plane it is easier by a factor of order 3.19 to do so at L4=L5 compared to L1=L2 - ie. for a fixed sail acceleration the displacement distance at L4=L5 is greater than that at L1=L2. In addition, displaced L4=L5 orbits are passively stable, making them more forgiving to sail pointing errors than highly unstable orbits at L1=L2.The drawback of the new family of orbits is the increased telecommunications path-length, particularly the Moon-L4 distance compared to the Moon-L2 distance

    Solar sail formation flying for deep-space remote sensing

    Get PDF
    In this paper we consider how 'near' term solar sails can be used in formation above the ecliptic plane to provide platforms for accurate and continuous remote sensing of the polar regions of the Earth. The dynamics of the solar sail elliptical restricted three-body problem (ERTBP) are exploited for formation flying by identifying a family of periodic orbits above the ecliptic plane. Moreover, we find a family of 1 year periodic orbits where each orbit corresponds to a unique solar sail orientation using a numerical continuation method. It is found through a number of example numerical simulations that this family of orbits can be used for solar sail formation flying. Furthermore, it is illustrated numerically that Solar Sails can provide stable formation keeping platforms that are robust to injection errors. In addition practical trajectories that pass close to the Earth and wind onto these periodic orbits above the ecliptic are identified

    Natural and sail-displaced doubly-symmetric Lagrange point orbits for polar coverage

    Get PDF
    This paper proposes the use of doubly-symmetric, eight-shaped orbits in the circular restricted three-body problem for continuous coverage of the high-latitude regions of the Earth. These orbits, for a range of amplitudes, spend a large fraction of their period above either pole of the Earth. It is shown that they complement Sun-synchronous polar and highly eccentric Molniya orbits, and present a possible alternative to low thrust pole-sitter orbits. Both natural and solar-sail displaced orbits are considered. Continuation methods are described and used to generate families of these orbits. Starting from ballistic orbits, other families are created either by increasing the sail lightness number, varying the period or changing the sail attitude. Some representative orbits are then chosen to demonstrate the visibility of high-latitude regions throughout the year. A stability analysis is also performed, revealing that the orbits are unstable: it is found that for particular orbits, a solar sail can reduce their instability. A preliminary design of a linear quadratic regulator is presented as a solution to stabilize the system by using the solar sail only. Finally, invariant manifolds are exploited to identify orbits that present the opportunity of a ballistic transfer directly from low Earth orbit
    • 

    corecore