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Solar sail formation flying for deep space remote

sensing

James D. Biggs ∗Colin R. McInnes †

In this paper we consider how ‘near’ term solar sails can be used in formation above

the ecliptic plane to provide platforms for accurate and continuous remote sensing of the

polar regions of the Earth. The dynamics of the solar sail elliptical restricted three-body

problem (ERTBP) are exploited for formation flying by identifying a family of periodic

orbits above the ecliptic plane. Moreover, we find a family of 1 year periodic orbits where

each orbit corresponds to a unique solar sail orientation using a numerical continuation

method. It is found through a number of example numerical simulations that this family of

orbits can be used for solar sail formation flying. Furthermore, it is illustrated numerically

that Solar Sails can provide stable formation keeping platforms that are robust to injection

errors. In addition practical trajectories that pass close to the Earth and wind onto these

periodic orbits above the ecliptic are identified.

Nomenclature

a semi-major axis

as solar sail acceleration (m/s2)

ax, ay, az components of solar sail acceleration (m/s2) such that as = (ax, ay, az)T

e eccentricity of the Earth’s orbit about the Sun e = 0.0167

f true anomaly of the Earth about the Sun (radians)

G universal gravitational constant (6.673× 10−11m3kg−1s−2)

m1 mass of the Sun (1.98892× 1030 kg)

m2 mass of the Earth (5.9742× 1024 kg)

n̂ unit normal to the sail

p semi-latus rectum
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t∗ dimensionless time

r position vector of the solar sail in the rotating frame (AU)

r1 position of the Solar Sail with respect to the Sun (AU)

r2 position of the Solar Sail with respect to the Earth (AU)

V velocity vector of the Solar Sail

X, Y, Z rotating coordinate frame (AU)

x, y, z rotating-pulsating coordinate frame (AU)

β solar sail lightness number -

ratio of solar sail radiation pressure acceleration to solar gravitational acceleration β = 0.05

δ the angle that the sail normal makes with the y-axis (radians)

γ the angle that the sail normal makes with the x-axis (radians)

ρ distance between the Sun and the Earth (AU)

µ dimensionless mass of the Earth µ = 3× 10−6

ω angular velocity vector of the rotating frame

1. Introduction

In this paper we propose solar sail propelled spacecraft flying in formation high above the libration point

L1 as platforms for remote sensing of the polar regions. Such deep space platforms allow for continuous

remote sensing over large areas of the Earth - a viewpoint that is not possible from Low Earth Orbit (LEO)

or Geosynchronous Earth Orbit (GEO) satellites. This provides a comprehensive and synoptic view of the

Earth enabling the development of our understanding of the Earth’s climate system. Such Earth observations

from L1 are both useful and feasible for remote sensing as highlighted in the Triana mission concept.1 A

solar sail which utilizes solar radiation for propulsion is known to be effective in maintaining orbits about

and above such Libration points.2–4 Using the solar sail in these regions is advantageous as it can prolong

mission duration extensively as the sail is not limited by propellant mass. In this paper we further exploit

the solar sail’s dynamics by considering its potential for formation-flying in deep space.

Solar sail propelled formation flying has the potential to enhance space-based imaging/interferometry

missions by distributing mission tasks to multiple satellites. Incorporating this technology into future space

missions at, and high above L1, can enlarge the sensing aperture and increase versatility of future observation

platforms. Moreover, formation flying can be used to measure continuously both surface reflectance and

atmospheric optical thickness. At least two satellites are necessary for taking such measurements because

a partially cloudy atmosphere is a semitransparent layer of unknown optical thickness and the surface

reflectance is also unknown.7 One such example is the ‘Crystal shape estimation method’ which is used to
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measure the radiative effects of cirrus clouds in climate models, and requires measurements taken from the

same clouds using two (or more) satellites in formation.8

Solar sail propelled formation flying around heliocentric displaced orbits has been considered recently

in Gong et.al.,10 although the regions they consider have no practical application for remote sensing of

the Earth. Simanjuntak et.al.11 have also used a similar derivation of the solar sail relative dynamics to

consider formation control about the classical L2 point. Additionally solar sail propelled spacecraft flying

in formation about L1 has been proposed for the Geostorm warning concept.9 In this concept a group of

four solar sails are placed in a diamond arrangement adjacent to L1 to achieve a multi-point measurement

of the solar environment. However, in this paper we propose using solar sail formation flying to provide a

platform for advanced remote sensing of the polar regions. Additionally we propose a new control design

for formation flying based on the underlying dynamics of the solar sail ERTBP. This method of solar sail

propelled spacecraft flying in formation has the advantage over previous methods9–11 in that it does not

require linearization about the leader satellite, it can accommodate a large number of sails in both close and

large formations and requires only small, practically feasible, variations in each sail’s orientation to maintain.

The methodology in this paper extends from the identification of a family of periodic orbits high above

L1, where each orbit in the family has the same period. This class of family of orbits (each orbit having

the same period) is unique to the solar sail restricted three-body problem in that they do not exist in the

classical three-body problem. It is shown that this family of orbits can be exploited for formation control

by initializing a number of solar sails on various nearby orbits within this family. Furthermore, as the sail’s

orbits are of the same period, the relative distance between each sail is small and bounded, thus ensuring a

strong degree of formation rigidity.

This paper extends the work of Biggs et.al.6 who identify a 1 year periodic orbit high above the ecliptic

plane in the solar sail elliptical restricted three-body problem (ERTBP). Biggs et.al.6 used the method of

Lindstedt-Poincaré to obtain high-order approximations of periodic orbits above the ecliptic in the solar sail

circular restricted three-body problem (CRTBP).3 Following this, the high-order approximations were used

as an initial ‘guess’ in a differential corrector to obtain closed orbits in the full nonlinear model. Finally,

a numerical continuation with the eccentricity as the continuation parameter was used to identify a 1 year

periodic orbit above the ecliptic plane in the solar sail ERTBP. In this paper we extend this work by using

a continuation method12 to find a family of 1 year periodic orbits with the solar sail orientation angle γ as

the continuation parameter. This paper investigates how this unique family of orbits can be exploited for

formation flying and this is illustrated through a number of example formation configurations. In addition

some practical problems of formation control are addressed such as station keeping and robustness of the

formations to injection errors.
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2. Equations of motion for the solar sail elliptical restricted three-body

problem (ERTBP)

We will consider a rotating frame of reference in which the primary masses are fixed and use a coordinate

transformation to the pulsating-rotating frame. The pulsating-rotating frame is convenient as the true

anomaly appears in the equations of motion as the independent variable and therefore we do not need to

solve Kepler’s equation. We begin by deriving the Lagrangian equations of the solar sail ERTBP. In this

case the small primary is orbiting the large primary on an elliptic orbit. This orbit complies with the two

body Keplerian motion; the distance between the primaries is given through the conic equation ρ = p
1+e cos f

where p = a(1 − e2). The rate of change of the true anomaly satisfies ḟ = h/ρ2 where h2 = G(m1 + m2)p.

We assume that an appropriate set of units is introduced so that G = 1, a = 1 and the system has unit total

mass. The position vector of the solar sail in the rotating frame is r = (X,Y, Z)T . The coordinate system

rotates at a rate ḟ about the ẑ axis and therefore ω = ḟ ẑ. It follows that:

V = ṙ + ω × r = [(Ẋ − ḟY ), Ẏ + ḟX, Ż]T (1)

We define the constant µ = m2/(m1 + m2) where m1 is located at (−ρµ, 0, 0)T and m2 is located at

(ρ(1 − µ), 0, 0)T . The position of the solar sail with respect to the primaries is then expressed as r1 =

[X +µρ, Y, Z]T and r2 = [X +(µ− 1)ρ, Y, Z]T . The Kinetic energy is K = 1
2{(Ẋ − ḟY )2 +(Ẏ + ḟX)2 + Ż2}

with the potential energy U = − (1−µ)
‖r1‖ −

µ
‖r2‖ , it follows that the Lagrangian is then

L =
1
2
{(Ẋ − ḟY )2 + (Ẏ + ḟX)2 + Ż2}+

(1− µ)
‖r1‖ +

µ

‖r2‖

With this Lagrangian the Euler-Lagrange equations with the addition of the solar sail acceleration as gives:

d

dt

(
∂L

∂ṙi

)
− ∂L

∂ri
= asi (2)

where i = x, y, z are the vectors components and as is defined by:

as =
β(1− µ)
‖r1

2‖ (r̂1 · n̂)2n̂ (3)

We define n̂ in terms of two angles γ and δ with respect to the rotating frame:

n̂ = (cos γ cos δ, cos γ sin δ, sin γ)T (4)

While a β value of order 0.3 − 0.4 is considered within the realm of possibility, to put the analysis in this

paper well within the near-term we will consider very modest β values of order 0.05. In order to simplify

equation (2), a transformation to rotating-pulsating coordinates is required.14 This transformation consists

of normalizing time by
√

(m1 + m2)/ρ3 and normalizing position by the instantaneous distance:

X = ρx, Y = ρy, Z = ρz (5)
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then transforming time derivatives into derivatives with respect to the true anomaly yields

d (·)
dt∗

=
d (·)
df

df

dt∗
=

d (·)
df

ḟ ,
dρ

df
=

pe sin f

(1 + e cos f)2
(6)

The relationship between the dimensionless, time dependent and the dimensionless true anomaly-dependent

velocities and accelerations are:

Ẋ = d(ρx)
dt∗ = ḟ(ρ′x + ρx′) = h

p [e sin fx + (1 + e cos f)x′

Ẍ = ρ̈x + (2ρ̇ + ρḟ)x′ + ḟ2ẍ

= h2

p2 [(1 + e cos f)x′′ + ex cos f ](1 + e cos f)3

(7)

the calculations of Ẏ , Ż, Ÿ , Z̈ follow in the same way and substituting these values into (2) yield the compact

equations:

x′′ − 2y′ = 1
1+e cos f

(
∂Ω
∂x + ax

)

y′′ + 2x′ = 1
1+e cos f

(
∂Ω
∂y + ay

)

z′′ + z = 1
1+e cos f

(
∂Ω
∂z + az

)
(8)

where

Ω =
1
2
(x2 + y2 + z2) +

(1− µ)
‖r1‖ +

µ

‖r2‖
The equations of motion (8) contain the time explicitly i.e. through the true anomaly f and are therefore

non-autonomous. This implies that any periodic solution of the solar sail ERTBP must have a period which

is an integer multiple of 1 year. In the case of remote sensing applications periodic orbits of one year are

most convenient for remote sensing of the Earth’s poles. Moreover, an orbit with a yearly periodicity means

that a sail over the polar region could change position on the ecliptic plane at the same rate as the seasonal

changes on Earth. Therefore, an imaging instrument could look at any spot on the surface under the same

zenith angle regardless of the season.3 Before proceeding with the identification of a family of 1 year orbits,

we highlight that this analysis focuses on a near term solar sail with β = 0.05. However, one key parameter

in remote sensing missions is the distance of the Earth from the platform. This parameter drives aperture,

interferometry baseline, and resolution requirements, which in turn drive mission cost. As the value of the

lightness number β will determine the distance of the Earth from the platform it will have a direct impact

on mission costs. In Biggs et.al.6 and Waters and McInnes3 a plot of the artificial equilibria above the

ecliptic for different values of β are given for the case of the solar sail circular (e = 0) restricted three

body problem. These equilibrium points are then used as a starting point to generate periodic orbits in the

solar sail restricted three-body problem. As each of these orbits center around the equilibrium points they

provide a good approximation of the average distance of the periodic orbit from the Earth. To illustrate this,

Table 1 gives the distance of the orbit from the the Earth in the x direction for various β given an average

displacement of approximately 0.01 AU above the ecliptic (or an approximate average altitude of 1.49× 106

km above the Earth) :
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Table 1. The distance of the sail from the Earth along the x-axis for varying lightness number β

Lightness Number β 0.05 0.1 0.2 0.4 0.5

Distance from the Earth (AU) 0.0110 0.0085 0.0073 0.0064 0.006172

Distance from the Earth (km) 1,645,578 1,271,583 1,092,065 957,427 923,318

Therefore, for higher performing displaced sails it is possible to reduce the distance of the sail from the

Earth.

3. A family of periodic orbits each with period 1 year

In this section a numerical continuation method is implemented with the solar sail orientation angle γ

as the continuation parameter. The continuation algorithm is based on a monodromy variant of Newton’s

method.12 The initial orbit which will serve as a starter in the numerical continuation is given in the solar sail

ERTBP.6 In this section we find 1 year periodic orbits above the ecliptic in the solar sail ERTBP described

by the nonlinear system Ẋ(t) = F (X(t), t), where X(t) = (x, y, z, x′, y′, z′). The initial conditions that

yield a 1 year periodic orbit above the ecliptic in the solar sail ERTBP are:

x(0) = 0.99026089328, y(0) = 0.00000002532, z(0) = 0.01497820749

x′(0) = 0.00000000062, y′(0) = 0.00306117311

z′(0) = −0.00000003900, f(0) = 0, γ = 0.809196, δ = 0

(9)

The Newton method starts with an orbit X(t) initialized at t = 0 on a surface of section. In our case we

require that all orbits in the family be of the same period so the return map in the rotating-pulsating frame

is defined by a T-map of period f = 2π. The monodromy variant of Newton’s method provides a numerical

algorithm for moving from the nearby trajectory to the periodic orbit itself. Moreover, the Newton method

provides an iterative improvement to the choice of initial conditions for a periodic orbit:12

X∗(0) = X(0) + (I −M)−1[X(T )−X(0)] (10)

where X∗(0) is the improved initial condition and M is the monodromy matrix. One of the problems

encountered with this Newton method is that the determinant of (I − M) may be zero and therefore the

inverse is not well defined. However, this problem is resolved by using the Moore-Penrose pseudo inverse.13

The implementation of Newton’s method relies on the computation of the monodromy matrix as follows:

Let Γ(t) denote a periodic orbit with period T = 2π which satisfies the condition Γ(T ) = Γ(0), by letting

x = X(t)−Γ(t), we may linearize the nonlinear system about this periodic orbit, resulting in the variational

equations

ẋ =A(t)x
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where

A(t) = A(t + T ) =
∂F

∂X

∣∣∣∣
X(t)=Γ(t)

explicitly:

A(t) =




0 I

J Ω


 , J =




a b c

d e f

g h i




, Ω =




0 −2 0

2 0 0

0 0 0




(11)

where

a = ∂F x

∂x

∣∣∣
Γ(t)

, b = ∂F x

∂y

∣∣∣
Γ(t)

, c = ∂F x

∂z

∣∣∣
Γ(t)

d = ∂F y

∂x

∣∣∣
Γ(t)

, e = ∂F y

∂y

∣∣∣
Γ(t)

, f = ∂F y

∂z

∣∣∣
Γ(t)

g = ∂F z

∂x

∣∣∣
Γ(t)

, h = ∂F z

∂y

∣∣∣
Γ(t)

, i = ∂F z

∂z

∣∣∣
Γ(t)

Recasting the variational equations in terms of the state transition matrix (or principle fundamental matrix)

Φ = ∂X(t)/∂X(0), we have

Φ̇ = A(t)Φ, Φ(0) = I

where Φ is a 6 × 6 matrix and A(t) = A(t + T ). The monodromy matrix M is then defined as M = Φ(T ).

The monodromy matrix M is computed at each iteration and Newton’s method is successful in identifying

a family of 1 year period orbits with γ as the continuation parameter. The continuation parameter is varied

between approximately 0.386 < γ < 0.817 to yield Figures 1 and 2. In each case the smaller value of γ cor-

responds the periodic orbit furthest from the Earth and the largest value of γ to the periodic orbit nearest

the Earth, as illustrated in Table 2.
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x 10
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0.008

0.01

0.012

0.014

0.016

0.018

y (au)

z 
(a

u
)

Earth

Family of orbits of period 1 year

Figure 1. A family of orbits above the ecliptic plane.
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Figure 2. (i) The projection of Figure 1 onto the x-y plane. (ii) The projection of Figure 1 onto the x-z plane.

Table 2. The distance of the sail from the Earth along the x-axis for varying sail angle γ

Sail angle (γ) 0.368 0.438 0.614 0.76319 0.8164

Distance from the Earth (AU) 0.016497 0.015097 0.01281 0.010597 0.009697

Distance from the Earth (km) 2,467,918 2,258,481 1,916,350 1,585,290 1,450,651

In order to recreate some of these orbits we state the initial conditions required to produce the 1 year

periodic orbit at approximately 2.5 million km from the Earth:

x(0) = 0.98290573909134, y(0) = 0.00000000022241, z(0) = 0.01568674010849

x′(0) = 0.00000000007113, y′(0) = 0.00218588428133

z′(0) = −0.00000000037292, f(0) = 0, γ = 0.36795399999858, δ = 0

(12)

and the initial conditions required to produce the 1 year periodic orbit approximately 1.5 million km from

the Earth:

x(0) = 0.99040892177312, y(0) = 0.00000000677662, z(0) = 0.01765441016531

x′(0) = 0.00000000058082, y′(0) = 0.00384425432531

z′(0) = −0.00000001068849, f(0) = 0, γ = 0.81635569999972, δ = 0

(13)

The amplitude of these 1 year orbits in Figure 1 range from approximately 75,000 kilometers in radius

to extremely large amplitudes of over 1 million kilometers in radius. The appropriate amplitude for the

formation can therefore be chosen with a great deal of flexibility. In addition to this we will illustrate how

this family of 1 year orbits can be used to design formations of sails which will further enhance remote

sensing capabilities.
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4. Solar Sail propelled spacecraft flying in formation

Formation flying has the advantage that it is possible to use small groups of less expensive, less complex

satellites in place of singularly large, highly sophisticated platforms, such that a catastrophic failure does not

necessarily cause irreparable harm to an overall mission. However, more significantly to this paper, solar sail

formation flying has the potential to enhance space-based imaging/interferometry missions by distributing

mission tasks to many small satellites. In this section the 1 year periodic orbits identified in Figure 1 are

utilized for the purpose of formation flying. Initially it is shown that if two sails are placed close to one

another on nearby orbits their relative motion will remain small and bounded. As the relative distance is

bounded the formation will remain in an approximate rigid configuration.

4.A. Bounded relative solar sail motion

Using the family of 1 year periodic orbits we can place any number of sails in formation on a number of

different orbits. As each of the orbits are of the same period the change in relative position will be bounded,

as illustrated in Figures 3 and 4. In Figure 3 (i) two solar sail’s are initialized on separate orbits at a distance

of approximately 40 kilometers apart. It can be seen from Figure 3 (ii) the distance between the two solar

sails remains small and bounded with a minimum separation of approximately 20 kilometers (lower bound)

and a maximum separation of approximately 65 kilometers (upper bound). It is of course possible to place

two sails on even closer orbits and in this case the absolute variation in separation is further reduced. For

example two sails placed initially at 1 kilometer apart on different 1 year orbits in the family are shown to

have a minimum of 0.6 kilometers and a maximum of 1.2 kilometers separation.
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Figure 3. (i) Sail trajectories initialized 20 km apart. (ii) the relative distance between each sail.
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In Figure 4 (i) two sails are initialized on separate orbits with large relative distance of approximately 400,000

kilometers. In this case the minimum separation is approximately 300,000 kilometers (lower bound) and a

maximum separation of approximately 550,000 kilometers (upper bound). This illustrates that for large

initial separation the variation in absolute terms is large but nevertheless bounded. The bounded relative

distance of sails placed on orbits in this family imply that this region of phase space in the solar sail ERTBP

would be useful for formation flying. In the following subsection we illustrate this with a number of simple

examples.
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Figure 4. (i) Sail trajectories initialized 400,000 km apart. (ii) the relative distance between each sail.

4.B. Configurations for Formation flying

In this subsection we illustrate a number of simple formations that can be achieved and exploited for the

purpose of remote sensing. Although small and large formations are equally achievable we illustrate forma-

tions that are spaced at large distances apart as their evolution in time can be clearly illustrated globally.

There are two ways of positioning a solar sail on this family of orbits so that their relative distance remains

small and bounded. Firstly, we can position two sails on the same periodic orbit, but at different initial

positions on the orbit. This type of formation has the advantage that by flying the same trajectory and

close together, nearly identical images taken by each satellite can be compared on the ground. Moreover,

the leading satellite on the orbit will collect data and the follower satellite will refine the data through an

atmospheric corrector.15 In other words a formation of satellites can gather, actual real time information

about how the atmosphere distorts images from the ground and the sensors can then be calibrated to create

significantly clearer images. This type of formation control can be implemented on any periodic orbit and an

illustration is given in Figure 5 (i) with the orientation of the sails fixed at γ = 0.8042 rads and δ = 0 rads.
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A second way of positioning sails so that their relative distance remains small and bounded is by placing

them on separate nearby orbits in the family. This is illustrated in Figure 5 (ii) which shows snapshots of

two solar sails in formation as they motion around the 1 year orbits. This type of formation is possible for

solar sails with different orientations i.e that induce different solar sail accelerations. In this example the sail

on the inner orbit is oriented at γ = 0.8042 rads and δ = 0 rads and the sail on the outer orbit is oriented

at γ = 0.809196 rads and δ = 0 rads.
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Figure 5. (i) Snapshots of two solar sails in a delayed formation. (ii) Snapshots of two solar sails in formation

on separate orbits.

Finally, we can combine the two procedures of obtaining the formations in Figures 5 (i) and (ii) in order

to achieve more complex formations. A simple triangular formation is illustrated in Figure 6. It is clear that

more complex formations with a larger number of sails can also be formed using this family of 1 year orbits.

5. Practical control of solar sail formation flying

The 1 year periodic orbits illustrated in this paper are theoretically ideal regions in phase space to

perform formation control. However, if such applications are to be implemented, we have to first consider

some practical control issues. Firstly, the 1 year periodic orbits in Figure 1 are unstable; the characteristic

exponents are of the form {αj , ᾱj , αi, ᾱi,±αr} where ᾱ denotes the complex conjugate of α and αr is a real

exponent. As the characteristic exponent αr is much greater than 0 for these orbits they are highly unstable.

In such a dynamically sensitive regime stabilization is required to counteract the effects of numerical error

during the integration process, particularly when propagating the path over multiple revolutions. It is shown
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Figure 6. Snapshots of a triangular solar sail formation which can be maintained indefinitely.

in Biggs et.al.5 that the periodic orbit induced by the initial conditions (9) can be stabilized using small

variations in the solar sail’s orientation about γ = 0.809196, δ = 0 and within the sail’s maximum deflection

rate of 1 degree per hour (a modest estimate). This procedure can be used to stabilize any of the 1 year

periodic orbits in Figure 1. In this Section we proceed to investigate the robustness of the sail’s ability to

stabilize its motion on a 1 year orbit subject to initial orbit injection errors.

We proceed by using a continuous (time-varying) LQR controller in the solar sail ERTBP to track a

periodic reference orbit using variations in the sail’s orientation. The physical constraints to be considered

are the sail’s maximum deflection (radians) −π/2 ≤ γ, δ ≤ π/2 (the sail has only one reflective side) and

its maximum rate of deflection (radians per day) is −0.42 ≤ (γ̇, δ̇) ≤ 0.42 (1 degree per hour). To begin we

linearize the equations of motion about the reference orbit Γ(t) and its corresponding solar sail orientation

ue = (γe, δe)T . The reference orbit of each sail Γ(t) corresponds to a particular orbit in the family. The most

appropriate choice of nominal orbit within this family would be dependent on the remote sensing missions

and required formation i.e desired distance from the Earth and relative distances between each spacecraft.

Writing x = X(t)− Γ(t) and ∆u = u(t)− ue then we can write the linear time-varying system as:

ẋ = A(t)x + B∆u (14)

where

A(t) = ∂f(X(t), u(t))/∂X|X(t)=Γ(t) , B = ∂f(X(t), u(t))/∂u(t)|u(t)=ue

The linear state feedback control law which minimizes the quadratic cost function J =
∞∫
0

xT Qx + ∂uT R∂udt

where Q, R are symmetric positive semi-definite weighting matrices is given by ∆u = −Kx with the time-

varying gains matrix K = R−1BT P (t) where P (t) is the unique, positive semi-definite solution to the

differential Riccati equation:

A(t)T P (t) + P (t)A(t)− P (t)BR−1BT P (t) + Q = Ṗ (t) (15)
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The weights Q and R are free to choose and for simplicity this freedom is reduced to one parameter by letting

Q = I6 and R = kI2, where k is a constant. Therefore, the control effort will be penalized if k is large and

the distance from the orbit will be penalized if k is small. The procedure used in this paper to determine Q

and R is to solve equation (15) for Ṗ (t) = 0 at t = 0 to obtain a constant K matrix. We then vary Q and

R until we obtain a K that gives us the best control performance. Having obtained the most appropriate

constant K we compute the corresponding P matrix through the equation P = BRK. This P will then

serve as the initial condition P (0) in the numerical integration of (15) to give the true optimal gains matrix

for the linear time-varying system. We consider random initial injection errors and set the velocity error

threshold to approximately ±200 m/s. It was found that for these initial velocity errors a sail placed within

100,000 km of the orbit would converge to and stabilize its motion on the orbit. However, in many cases

it was possible to achieve convergence with injection errors that induce much larger initial position errors

(over 1,000,000 km can be achieved). This robustness to injection errors is due to the fact that the sails are

operating within a vicinity of low pseudo gravity potential. This robustness is illustrated in the following

example shown in Figure 7. We note that the active control remains within the sail’s maximum deflection

rate of 1 degree per hour
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Figure 7. (i) Two triangular formations initialized with different and large injection errors.(ii) Three Sails

initialized far apart in the vicinity of the 1 year periodic orbits.

In Figure 7 (i) two triangular formations are initialized with very different initial injection errors. In this

case the two formations converge to the same formation on the 1 year orbits illustrating its robustness to

initial injection errors. In addition it is illustrated in Figure 7 (ii) that three solar sails at large distances

apart and with large injection errors converge to a triangular formation on the 1 year periodic orbits. This

shows that even if the sail’s are not initialized in formation and providing their reference trajectories are
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adequately defined they will converge to their desired formation. In each of these cases the solar sail attitude

angle does not violate its physical constraints of −π/2 ≤ γ, δ ≤ π/2 and its maximum rate of deflection of 1

degree per hour. To give an indication of the magnitude and rate of the control we plot the attitude angles γ

and δ required to drive the sail onto the reference and stabilize it over time (days) for the Sail A in Figure 7

(ii). This plot is illustrated in Figure 8 (i) over 500 days and it can be seen that for such a large perturbation

the trajectory will converge to the reference orbit after approximately 1 year. It is clear from Figure 8 (i)

that the largest deflection rates occur over the initial stage and converge to zero as the sail approaches the

nominal orbit. To illustrate that the constraints are not being violated we plot the deflection rates over the

first 5 days in Figure 8 (ii). In each case we fix the initial value of γ and δ equal to that required to settle on

the reference orbit. As the sail is perturbed a large distance from the reference orbit the sail requires a large

initial maximum rate of deflection which can be seen in Figure 8 (ii). The gradient of the curve in Figure 8

(ii) yields the deflection rate of the sail in radians per day and this can be seen to remain within the bound

of −0.42 ≤ (γ̇, δ̇) ≤ 0.42.
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Figure 8. Control angles γ and δ (radians) over time (i) 500 days (ii) 5 days .

A final issue for the control of the sails is how to transfer them efficiently from the Earth to the 1 year

periodic orbits above the ecliptic. This can be achieved by considering solar sail trajectories that pass close

to the Earth along stable manifolds of the periodic orbits. The solar sail may be injected onto one of these

trajectories and will then wind onto the periodic orbit using only solar radiation pressure for propulsion as

illustrated in Figure 9. To obtain these trajectories we initialize the solar sail on the periodic orbit and

backward integrate in the direction of the stable manifold. The time taken for a near Earth trajectory to

arrive on a periodic orbit in Figure 9 is less than 8 months.
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Figure 9. (i) Near Earth trajectories that wind onto orbits above the ecliptic plane. (ii) The projection of

Figure 9 (i) onto the x-y plane. (iii) The projection of Figure 1 (i) onto the x-z plane.

In summary a number of ‘near term’ solar sails can be injected onto trajectories close to the Earth that will

wind onto a family of orbits in a pre-specified formation.

6. Conclusion

In this paper it has been illustrated that ‘near’ term solar sails have the potential for robust formation

flying above the ecliptic plane for the purpose of continuous remote sensing of the polar regions. A family

of 1 year periodic orbits above the ecliptic in the solar sail elliptical restricted three-body problem is found

using a numerical continuation method. It is shown through a number of numerical simulations that this

family of orbits can be exploited for solar sail formation flying. It is illustrated that these formations are

stable and robust to initial injection errors. Finally, the control of the sails into formation above the ecliptic

is illustrated using trajectories that pass close to the Earth and that wind onto these periodic orbits.
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