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Asymptotic Analysis of Displaced Lunar Orbits

Jules Simo∗ and Colin R. McInnes†

University of Strathclyde, Glasgow, G1 1XJ, United Kingdom

I. Introduction

The design of spacecraft trajectories is a crucial task in space mission design. Solar sail technology
appears as a promising form of advanced spacecraft propulsion which can enable exciting new space-

science mission concepts such as solar system exploration and deep space observation. Although solar sailing
has been considered as a practical means of spacecraft propulsion only relatively recently, the fundamental
ideas are by no means new (see McInnes1 for a detailed description). A solar sail is propelled by reflecting
solar photons and therefore can transform the momentum of the photons into a propulsive force. Solar
sails can also be utilised for highly non-Keplerian orbits, such as orbits displaced high above the ecliptic
plane (see Waters and McInnes2). Solar sails are especially suited for such non-Keplerian orbits, since they
can apply a propulsive force continuously. In such trajectories, a sail can be used as a communication
satellite for high latitudes. For example, the orbital plane of the sail can be displaced above the orbital
plane of the Earth, so that the sail can stay fixed above the Earth at some distance, if the orbital periods
are equal (see Forward3). Orbits around the collinear points of the Earth-Moon system are also of great
interest because their unique positions are advantageous for several important applications in space mission
design (see e.g. Szebehely4, Roy,5 Vonbun,6 Thurman et al.,7 Gómez et al.8,9). Several authors have tried
to determine more accurate approximations (quasi-Halo orbits) of such equilibrium orbits10. These orbits
were first studied by Farquhar11, Farquhar and Kamel10, Breakwell and Brown12, Richardson13, Howell14,15.
If an orbit maintains visibility from Earth, a spacecraft on it (near the L2 point) can be used to provide
communications between the equatorial regions of the Earth and the lunar poles. The establishment of a
bridge for radio communications is crucial for forthcoming space missions, which plan to use the lunar poles.
McInnes16 investigated a new family of displaced solar sail orbits near the Earth-Moon libration points.
Displaced orbits have more recently been developed by Ozimek et al.17 using collocation methods. In Baoyin
and McInnes18,19,20 and McInnes16,21, the authors describe new orbits which are associated with artificial
Lagrange points in the Earth-Sun system. These artificial equilibria have potential applications for future
space physics and Earth observation missions. In McInnes and Simmons22, the authors investigate large new
families of solar sail orbits, such as Sun-centered halo-type trajectories, with the sail executing a circular
orbit of a chosen period above the ecliptic plane. We have recently investigated displaced periodic orbits
at linear order in the Earth-Moon restricted three-body system, where the third massless body is a solar
sail (see Simo and McInnes23). These highly non-Keplerian orbits are achieved using an extremely small
sail acceleration. It was found that for a given displacement distance above/below the Earth-Moon plane it
is easier by a factor of order 3.19 to do so at L4/L5 compared to L1/L2 - ie. for a fixed sail acceleration
the displacement distance at L4/L5 is greater than that at L1/L2. In addition, displaced L4/L5 orbits are
passively stable, making them more forgiving to sail pointing errors than highly unstable orbits at L1/L2.
The drawback of the new family of orbits is the increased telecommunications path-length, particularly the
Moon-L4 distance compared to the Moon-L2 distance.

In this note, we study the dynamics of displaced orbits in relation to the two and three-body Earth-Moon
problem and compare the results. The solar sail Earth-Moon problem differs greatly from the Earth-Sun
system as the Sun-line direction varies continuously in the rotating frame and the equations of motion of
the sail are given by a set of nonlinear, non-autonomous ordinary differential equations. Trajectories near
the Earth-Moon L1 and L2 points are not easily identified, such that the solar sail can enable continuous
∗Research Fellow, Department of Mechanical Engineering, jules.simo@strath.ac.uk.
†Professor, Department of Mechanical Engineering, colin.mcinnes@strath.ac.uk, Member AIAA.

1 of 9

American Institute of Aeronautics and Astronautics



communications with the equatorial regions of the Earth from any point on the lunar far-side. We therefore
develop an asymptotic analysis for large (a0 = 1.7 mm/s2) and small (a0 = 0.58 mm/s2) accelerations.
This analysis is obtained within an approximation of large displaced orbits (a0 = 1.7 mm/s2) by the
Moon-Sail two-body problem. The displaced periodic orbits found approach the asymptotic solutions as
the characteristic acceleration becomes large. It is shown for example that, with a suitable sail attitude
control program, a 4× 104 km displaced, out-of-plane trajectory far from the L2 with a sail acceleration of
1.7 mms−2 can be approximated using the two-body analysis. This simple, two-body approximate analysis
matches with the large displaced orbit found by Ozimek et al.17 using numerical collocation methods in a
previous study. For small acceleration we use a linear approximation of the Earth-Moon three-body problem
which again matches well with Ozimek et al.17

II. Moon-Sail Three-Body Problem

The motion of a solar sail moving under the gravitational influences of the Earth and the Moon can be
described in terms of the circular restricted three-body problem. In this model, we will assume that m1

represents the larger primary (Earth), m2 the smaller primary (Moon) and we will be concerned with the
motion of the sail which has a negligible mass (m1 > m2). It is always assumed that the two more massive
bodies (primaries) moving in circular orbits about their common center of mass. If we further restrict the
motion of the third body to be in the orbital plane formed by the other two bodies, the problem is the planar
circular restricted three-body problem (PCRTBP). In order to develop a mathematical model without loss
of generality, it is useful to introduce some parameters that are characteristics of each particular three-body
system. This set of parameters is used to normalize the equations of motion. The unit of mass is taken to
be the total mass of the system (m1 + m2) and the unit of length is chosen to be the constant separation
between m1 and m2. We further define the time units such that, the orbital period of the primaries about
their center of mass is 2π. Under these considerations the masses of the primaries in the normalized system
of units are m1 = 1− µ and m2 = µ, where

µ =
m2

m1 +m2
(1)

is the nondimensional gravitational parameter. The geometry for the Earth-Moon restricted three-body
system is depicted in Figure 1.
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Figure 1. Schematic geometry of the Earth-Moon restricted three-body problem.

II.A. Equations of motion in presence of a solar sail

The equation for the solar sail in a rotating frame of reference is described by

d2r

dt2
+ 2ω × dr

dt
+∇U(r) = a, (2)

where ω = ωẑ (ẑ is a unit vector pointing in the direction of z) is the angular velocity vector of the rotating
frame and r is the position vector of the solar sail relative to the center of mass of the two primaries. The
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three-body gravitational potential U(r) and the solar radiation pressure acceleration a are defined by

U(r) = −
[

1
2
|ω × r|2 +

1− µ
r1

+
µ

r2

]
,

a = a0(S · n)2n, (3)

where µ = 0.1215 is the mass ratio for the Earth-Moon system. The sail position vectors with respect to m1

and m2 respectively, are defined as r1 = [x+ µ, y, z ]T and r2 = [x− (1− µ), y, z]T , and a0 is the magnitude
of the acceleration due to solar radition pressure exerted on the sail. The unit normal to the sail n and the
Sun-line direction are given by

n =
[

cos(γ) cos(ω?t) − cos(γ) sin(ω?t) sin(γ)
]T
,

S =
[

cos(ω?t) − sin(ω?t) 0
]T
,

where ω? = 0.923 is the angular rate of the Sun line in the corotating frame in a dimensionless synodic
coordinate system. We will not consider the small annual changes in the inclination of the Sun-line with
respect to the plane of the system.

II.B. Linearized system

We now investigate the dynamics of the sail in the neighborhood of the libration points. We denote the
coordinates of the equilibrium point as rL = (xLi

, yLi
, zLi

) with i = 1, · · · , 5. Let a small displacement in
rL be δr such that r → rL + δr. The equation of motion for the solar sail in the neighborhood of rL are
therefore

d2δr

dt2
+ 2ω × dδr

dt
+∇U(rL + δr) = a(rL + δr). (4)

Then, retaining only the first-order term in δr = [ξ, η, ζ]T in a Taylor-series expansion, where (ξ, η, ζ) are
attached to the L2 point as shown in Figure 1, the gradient of the potential and the acceleration can be
expressed as

∇U(rL + δr) = ∇U(rL) +
∂∇U(r)
∂r

∣∣∣∣
r=rL

δr (5)

+O(δr2),

a(rL + δr) = a(rL) +
∂a(r)
∂r

∣∣∣∣
r=rL

δr (6)

+O(δr2).

It is assumed that∇U(rL) = 0, and the sail acceleration is constant with respect to the small displacement
δr, so that

∂a(r)
∂r

∣∣∣∣
r=rL

= 0. (7)

The linear variational system associated with the libration points at rL can be determined through a Taylor
polynomial by substituting Eqs. (6) and (7) into (4)

d2δr

dt2
+ 2ω × dδr

dt
−Kδr = a(rL), (8)

where the matrix K is defined as

K = −
[
∂∇U(r)
∂r

∣∣∣∣
r=rL

]
. (9)

Using the matrix notation the linearized equation about the libration point (Equation (8)) can be represented
by the inhomogeneous linear system Ẋ = AX + b(t), where the state vector X = (δr, δṙ)T , and b(t) is a
6× 1 vector, which represents the solar sail acceleration.
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The Jacobian matrix A has the general form

A =

(
03 I3

K Ω

)
, (10)

where I3 is a identity matrix, and

Ω =

 0 2 0
−2 0 0

0 0 0

 . (11)

For convenience the sail attitude is fixed such that the sail normal vector n, points always along the
direction of the Sun-line with the following constraint S ·n ≥ 0. Its direction is described by the pitch angle
γ relative to the Sun-line, which represents the sail attitude. The linearized nondimensional equations of
motion relative to a collinear libration point L2 can then be written as

ξ̈ − 2η̇ − Uoxxξ = aξ, (12)

η̈ + 2ξ̇ − Uoyyη = aη, (13)

ζ̈ − Uozzζ = aζ , (14)

where Uoxx, U
o
yy, and Uozz are the partial derivatives of the gravitational potential evaluated at the collinear

libration point, and the solar sail acceleration is defined in terms of three auxiliary variables aξ, aη, and aζ

aξ = a0 cos(ω?t) cos3(γ), (15)
aη = −a0 sin(ω?t) cos3(γ), (16)
aζ = a0 cos2(γ) sin(γ). (17)

We will continue with the solution to the linearized equations of motion in the Earth-Moon restricted
three-body problem in a later section.

III. Moon-Sail Two-Body Problem

In this section, we consider the motion of a solar sail moving under the gravitational influence of the
Moon only as shown in Figure 2. Such a problem is defined as the Moon-Sail two-body problem. For a large
displacement, such that the sail is far from the L1 or L2 point this provides a remarkably good approximation
to the problem. The forces acting on the sail can be seen in Figure 3.
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Figure 2. Schematic geometry of the Moon-
Sail two-body problem generating a hover
orbit.
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Figure 3. Representative forces.
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III.A. Equations of motion

In this model, the Moon is assumed to be fixed, while the solar sail is in a rotating frame of reference. To
describe the motion of the sail, we take a reference frame rotating with the Sun-line at angular velocity ω?,
such that the origin is at the center c. We write the two-body equations in a similar form to equation (2).
In the rotating frame r̈ = ṙ = 0 and we have the equality

∇Ũ(r) = a, (18)

where

Ũ(r) = −
[

1
2
|ω? × r|2 +

Gm2

r

]
. (19)

The equations of motion of the solar sail in component form may be written in cylindrical coordinates
(ρ, z) as

Gm2

r2
cos(θ) = a0 cos2(γ) sin(γ), (20)

Gm2

r2
sin(θ)− ω2ρ = a0 cos3(γ), (21)

with cos(θ) = z
r , sin(θ) = ρ

r , where m2 is the mass of the Moon, G is the gravitational constant and the
distance of the solar sail from the Moon is r =

√
ρ2 + z2 so that

Gm2z

r3
= a0 cos2(γ) sin(γ), (22)

Gm2ρ

r3
= a0 cos3(γ) + ω2ρ. (23)

Rearranging the equations (22) and (23), we obtain

tan(γ) =
z

ρ

[
1−

(
ω

ω̃

)2]−1

, (24)

for a given (ρ,z), where

ω̃2 =
GM

r3
. (25)

Similary from equations (22) and (23), the required radiation pressure acceleration for the two-body analysis
may also be obtained as

a0 = cos2(γ)−1

[(
(ω̃2z)2 +

(
ω̃2ρ− ω2ρ

)2]1/2
. (26)

We now have conditions for a large displaced periodic orbit centered on the Moon. We will evaluate the
usefullness of this model later.

IV. Solution of the linearized equations of motion for the three-body model

In order to evaluate the two and three-body models, we will obtain a displaced periodic orbit from the
linearized dynamics defined earlier.

Considering the dynamics of motion near the collinear libration points, we may choose a particular
periodic solution in the plane of the form (see Farquhar24)

ξ(t) = ξ0 cos(ω?t), (27)
η(t) = η0 sin(ω?t). (28)
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By inserting equations (27) and (28) in the differential equations (12-14), we obtain the linear system in ξ0
and η0, 

(
Uoxx − ω2

?

)
ξ0 − 2ω?η0 = a0 cos3(γ),

−2ω?ξ0 +
(
Uoyy − ω2

?

)
η0 = −a0 cos3(γ).

(29)

Then the amplitudes ξ0 and η0 are given by

ξ0 = a0

(
Uoyy − ω2

? − 2ω?
)

cos3(γ)(
Uoxx − ω2

?

)(
Uoyy − ω2

?

)
− 4ω2

?

, (30)

η0 = a0

(
− Uoxx + ω2

? + 2ω?
)

cos3(γ)(
Uoxx − ω2

?

)(
Uoyy − ω2

?

)
− 4ω2

?

, (31)

and we have the equality
ξ0
η0

=
ω2
? + 2ω? − Uoyy

−ω2
? − 2ω? + Uoxx

. (32)

The trajectory will therefore be an ellipse centered on a collinear libration point. We can find the required
radiation pressure acceleration by solving equation (30)

a0 = cos−3(γ)

[
ω4
? − ω2

?(Uoxx + Uoyy + 4) + UoxxU
o
yy

Uoyy − 2ω? − ω2
?

]
ξ0.

By applying the Laplace transform, the uncoupled out-of-plane ζ-motion defined by the equation (14)
can be obtained as

ζ(t) = U(t)a0 cos2(γ) sin(γ)|Uozz|−1 + ζ̇0|Uozz|−1/2 sin(ωζt) + cos(ωζt)[ζ0 − a0 cos2(γ) sin(γ)|Uozz|−1 (33)

where the nondimensional frequency ωζ is defined as

ωζ = |Uozz|1/2

and U(t) is the unit step function.

A sufficient condition for displaced orbits based on the sail pitch angle γ and the magnitude of the solar
radiation pressure a0 for fixed initial out-of-plane distance ζ0 can be derived. Specifically for the choice of
the initial data ζ̇0 = 0, equation (33) can be more conveniently expressed as

ζ(t) = U(t)a0 cos2(γ) sin(γ)|Uozz|−1 (34)
+ cos(ωζt)[ζ0 − a0 cos2(γ) sin(γ)|Uozz|−1].

The solution can then be made to contain only a constant displacement at an out-of-plane distance

ζ0 = a0 cos2(γ) sin(γ)|Uozz|−1. (35)

Furthermore, the out-of-plane distance can be maximized by an optimal choice of the sail pitch angle
determined by

d

dγ?
cos2(γ?) sin(γ?) = 0, (36)

γ? = 35◦.264. (37)

We now have conditions for a small displaced periodic orbit centered on the collinear libration points.

6 of 9

American Institute of Aeronautics and Astronautics



Figure 4. A contour plot and the vector
field of the characteristic acceleration a0 =
a0(ρ, z) in the Earth-Moon system: (a) a0 =
0.58 mm/s2, (b) a0 = 1 mm/s2, (c) a0 = 1.7
mm/s2, (d) a0 = 3 mm/s2, (e) a0 = 6 mm/s2.
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Figure 5. Linear analysis for small a0 = 0.58
mm/s2 (Orbit around L2).

V. Comparison of the linear three-body and the approximate two-body
solution

In this section, we compare the dynamics near the Earth-Moon L1 and L2 points for small accelerations
with the linear analysis, and the large hover orbits for large acceleration with the two-body analysis to the
orbit found by Ozimek et al.17 using a full three-body analysis. We demonstrate that for a given orbit radius
ρ and displacement distance z, we can find the characteristic acceleration a0 and the sail pitch angle γ using
the two-body analysis.

Let us consider the vector field on the plane given by

n(ρ, z) =

(
f2(ρ, z)√

f2
1 (ρ, z) + f2

2 (ρ, z)
,

f1(ρ, z)√
f2
1 (ρ, z) + f2

2 (ρ, z)

)
, (38)

where

f1(ρ, z) =
Gm2z

r3
, (39)

f2(ρ, z) =
Gm2ρ

r3
− ω2ρ. (40)

For a given (ρ,z) the contours of Figure 4 define the require sail accelaration a0 from equation (26) while the
vector field describes the required sail orientation n. From equations (22) and (23), this vector field defined
on the whole plane minus the origin describes the direction of the acceleration vector a = a(ρ, z).

This figure indicates for a large characteristic acceleration a0 = 1.7 mm/s2 an orbit with radius ρ ≈ 6×104

km and displacement distance z ≈ 4 × 104 km is possible. The point marked A in Figure 4 represents the
optimal displaced orbit. A small orbit at L2 with characteristic acceleration a0 = 0.58 mm/s2 is shown in
Figure 5 using the linear analysis.

Near L1 and L2 the displacement distance for the linear analysis for a small acceleration a0 = 0.58 mm/s2

and the two-body analysis for large acceleration a0 = 1.7 mm/s2 give a good approximation to the orbits
found by Ozimek et al.17 using a full three-body analysis (see Table 1).

7 of 9

American Institute of Aeronautics and Astronautics



Table 1. Comparison of displacement distance and orbit radius.

a0 (mm/s2) z (km)a z (km)b ρ(km)a ρ(km)b

0.58 ≈ 104 ≈ 104* − −
1.70 ≈ 4.5× 104 ≈ 4.0× 104† ≈ 5.6× 104 ≈ 6.5× 104

a Displacement and radius found by Ozimek et al. using Hermite-Simpson and seventh-degree Gauss
Lobatto collocation schemes17.

b Displacement and radius found by the approximate analysis in this paper.
* Displacement distance obtain from the linear analytical solution.
†Displacement distance obtain from the two-body approximation.

VI. Conclusion

This paper has demonstrated the approximation of large displaced orbits in the Earth-Moon circular
restricted three-body problem by the Moon-Sail two-body problem. In addition, based on the linearized
equation of motion near the collinear Lagrange points, displaced periodic orbits can be approximated by
using linear analytical analysis, while far from those points the classical two-body problem gives a good
approximation. A sufficient condition for displaced periodic orbits based on the sail pitch angle and the
magnitude of the solar radiation pressure for fixed initial out-of-plane distance has been derived. It was
shown that for a given orbit radius and displacement distance, we can find the characteristic acceleration and
the sail pitch angle using the two-body analysis. The orbits found approach the asymptotic solutions as the
characteristic acceleration becomes large. A particular use of such orbits include continous communications
between the equatorial regions of the Earth and the lunar poles.

VII. Acknowledgments

This work was funded by the European MCRTN (Marie Curie Research Training Network) AstroNet,
Contract Grant No. MRTN-CT-2006-035151.

References

1McInnes, C. R., Solar sailing: technology, dynamics and mission applications, Springer Praxis, London, 1999, pp. 11-29.
2Waters, T. and McInnes, C., “Periodic Orbits Above the Ecliptic in the Solar-Sail Restricted Three-Body Problem,” J.

of Guidance, Control, and Dynamics, Vol. 30, No. 3, 2007, pp. 687–693.
3Forward, R. L., “Statite: A Spacecraft That Does Not Orbit,” Journal of Spacecraft and Rocket , Vol. 28, No. 5, 1991,

pp. 606–611.
4Szebehely, V., Therory of Orbits: the restricted problem of three bodies, Academic Press, New York and London, 1967,

pp. 497-525.
5Roy, A. E., Orbital Motion, Institute of Physics Publishing, Bristol and Philadelphia, 2005, pp. 118-130.
6Vonbun, F., “”A Humminbird for the L2 Lunar Libration Point”,” Nasa TN-D-4468 , April 1968.
7Thurman, R. and Worfolk, P., “The geometry of halo orbits in the circular restricted three-body problem,” Technical

report GCG95, Geometry Center, University of Minnesota, 1996.
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