3,230 research outputs found

    All our yesterdays: a hydrological retrospective

    No full text
    International audienceThis paper traces the development and eventual recognition of hydrology as a scientific subject in its own right in the UK and, later, in the European Geophysical Society (EGS), now the European Geosciences Union (EGU). In the early 1960s, to facilitate decisions of executive government departments in meeting the rapidly increasing demand for industrial and domestic water supplies, a small Hydrological Research Unit (HRU) was established by the UK Department of Scientific and Industrial Research(DSIR) to investigate the comparative water use of forested and grassed upland catchments. These small beginnings in the HRU developed in a few years into the highly multi-disciplinary Institute of Hydrology (IH) as a source of independent advice for policy makers, with a capability to undertake longer term research, monitoring and data collection than was feasible in individual government departments or in the universities. Within IH, the range of specialities included not only engineering, physics, geography, geology, meteorology and instrumentation but also pollution, plant physiology, ecology, chemistry and economics. Said quickly in retrospect, the trajectory of the growth of IH seems smooth but, in reality, it masked many struggles between competing disciplines and departments before hydrology was recognised as a subject in its own right ? the science of water

    Warren McCulloch and the British cyberneticians

    Get PDF
    Warren McCulloch was a significant influence on a number of British cyberneticians, as some British pioneers in this area were on him. He interacted regularly with most of the main figures on the British cybernetics scene, forming close friendships and collaborations with several, as well as mentoring others. Many of these interactions stemmed from a 1949 visit to London during which he gave the opening talk at the inaugural meeting of the Ratio Club, a gathering of brilliant, mainly young, British scientists working in areas related to cybernetics. This paper traces some of these relationships and interaction

    Magnetism in the dilute Kondo lattice model

    Get PDF
    The one dimensional dilute Kondo lattice model is investigated by means of bosonization for different dilution patterns of the array of impurity spins. The physical picture is very different if a commensurate or incommensurate doping of the impurity spins is considered. For the commensurate case, the obtained phase diagram is verified using a non-Abelian density-matrix renormalization-group algorithm. The paramagnetic phase widens at the expense of the ferromagnetic phase as the ff-spins are diluted. For the incommensurate case, antiferromagnetism is found at low doping, which distinguishes the dilute Kondo lattice model from the standard Kondo lattice model.Comment: 11 pages, 2 figure

    Matrix product decomposition and classical simulation of quantum dynamics in the presence of a symmetry

    Full text link
    We propose a refined matrix product state representation for many-body quantum states that are invariant under SU(2) transformations, and indicate how to extend the time-evolving block decimation (TEBD) algorithm in order to simulate time evolution in an SU(2) invariant system. The resulting algorithm is tested in a critical quantum spin chain and shown to be significantly more efficient than the standard TEBD.Comment: 5 pages, 4 figure

    Symmetry adapted finite-cluster solver for quantum Heisenberg model in two-dimensions: a real-space renormalization approach

    Get PDF
    We present a quantum cluster solver for spin-SS Heisenberg model on a two-dimensional lattice. The formalism is based on the real-space renormalization procedure and uses the lattice point group-theoretical analysis and nonabelian SU(2) spin symmetry technique. The exact diagonalization procedure is used twice at each renormalization group step. The method is applied to the spin-half antiferromagnet on a square lattice and a calculation of local observables is demonstrated. A symmetry based truncation procedure is suggested and verified numerically.Comment: willm appear in J. Phys.

    From density-matrix renormalization group to matrix product states

    Full text link
    In this paper we give an introduction to the numerical density matrix renormalization group (DMRG) algorithm, from the perspective of the more general matrix product state (MPS) formulation. We cover in detail the differences between the original DMRG formulation and the MPS approach, demonstrating the additional flexibility that arises from constructing both the wavefunction and the Hamiltonian in MPS form. We also show how to make use of global symmetries, for both the Abelian and non-Abelian cases.Comment: Numerous small changes and clarifications, added a figur

    The quasi-periodic Bose-Hubbard model and localization in one-dimensional cold atomic gases

    Full text link
    We compute the phase diagram of the one-dimensional Bose-Hubbard model with a quasi-periodic potential by means of the density-matrix renormalization group technique. This model describes the physics of cold atoms loaded in an optical lattice in the presence of a superlattice potential whose wave length is incommensurate with the main lattice wave length. After discussing the conditions under which the model can be realized experimentally, the study of the density vs. the chemical potential curves for a non-trapped system unveils the existence of gapped phases at incommensurate densities interpreted as incommensurate charge-density wave phases. Furthermore, a localization transition is known to occur above a critical value of the potential depth V_2 in the case of free and hard-core bosons. We extend these results to soft-core bosons for which the phase diagrams at fixed densities display new features compared with the phase diagrams known for random box distribution disorder. In particular, a direct transition from the superfluid phase to the Mott insulating phase is found at finite V_2. Evidence for reentrances of the superfluid phase upon increasing interactions is presented. We finally comment on different ways to probe the emergent quantum phases and most importantly, the existence of a critical value for the localization transition. The later feature can be investigated by looking at the expansion of the cloud after releasing the trap.Comment: 19 pages, 20 figure

    Long-time behavior of the momentum distribution during the sudden expansion of a spin-imbalanced Fermi gas in one dimension

    Get PDF
    We study the sudden expansion of spin-imbalanced ultracold lattice fermions with attractive interactions in one dimension after turning off the longitudinal confining potential. We show that the momentum distribution functions of majority and minority fermions approach stationary values quickly due to a quantum distillation mechanism that results in a spatial separation of pairs and majority fermions. As a consequence, Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) correlations are lost during the expansion. Furthermore, we argue that the shape of the stationary momentum distribution functions can be understood by relating them to the integrals of motion in this integrable quantum system. We discuss our results in the context of proposals to observe FFLO correlations, related to recent experiments by Liao et al., Nature 467, 567 (2010).Comment: 8 pages including supplementary material, 9 eps figures, revised version as published, some text moved to the supplemental materia
    corecore