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We study the sudden expansion of spin-imbalanced ultracold lattice fermions with attractive inter-

actions in one dimension after turning off the longitudinal confining potential. We show that the

momentum distribution functions of majority and minority fermions quickly approach stationary values

due to a quantum distillation mechanism that results in a spatial separation of pairs and majority fermions.

As a consequence, Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) correlations are lost during the expansion.

Furthermore, we argue that the shape of the stationary momentum distribution functions can be under-

stood by relating them to the integrals of motion in this integrable quantum system. We discuss our results

in the context of proposals to observe FFLO correlations, related to recent experiments by Liao et al.,

Nature (London) 467, 567 (2010).
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The combination of strong correlations and quantum
fluctuations makes one-dimensional (1D) systems the
host of exotic phases and physical phenomena [1,2].
Those phases and phenomena, in many occasions first
predicted theoretically, have been observed in condensed-
matter experiments and have begun to be studied with
ultracold atomic gases [2]. A system of particular interest
in recent years has been the spin-imbalanced 1D Fermi
gas. Following theoretical predictions [3–9], its grand
canonical phase diagram has recently been investigated
experimentally [10]. The major interest in this model
comes from the fact that its entire partially polarized phase
has been theoretically shown [5,6,11–15] (for a review, see
Ref. [16]) to be the 1D analogue of the Fulde-Ferrell-
Larkin-Ovchinnikov (FFLO) state [17,18]. The FFLO
phase was introduced to describe a possible equilibrium
state in which magnetism and superconductivity coexist
due to the formation of pairs with finite center-of-mass
momentum leading to a spatially oscillating order parame-
ter. The existence of such a phase has remained controver-
sial in dimensions higher than one in theoretical studies
[19–21], while experiments have found no evidence of the
FFLO phase in three-dimensional systems [22,23].

An important challenge in ultracold fermion experi-
ments, which may have already realized the FFLO state
[10], is to confirm the existence of FFLO correlations (for
recent proposals see, e.g., Refs. [24–27]). A direct mea-
surement of the pair momentum distribution function

(MDF) in the partially polarized state [5,6,14] has been
suggested to provide such evidence [28]. However, this
remains very difficult because after turning off all confin-
ing potentials, the transverse expansion (in the directions
of very tight confinement) dominates the longitudinal one
[29]. Another interesting possibility is to let the gas expand
in the 1D lattice after turning off the longitudinal confining
potential and then measure the density profiles or the
MDFs of the independent species and/or pairs after some
expansion time. Some aspects of such an expansion ex-
periment have already been successfully carried out in 1D
tubes [30,31] as well as in two-dimensional and three-
dimensional optical lattices [32], namely, the independent
control over lattice and the trapping potential and the
measurement of the density profiles after the expansion.
For 1D gases, interaction effects during the expansion
cannot in general be neglected, leading to fundamentally
different behavior of observables before and after the gas
has expanded. For example, the expansion of the Tonks—
Girardeau gas in 1D results in a bosonic gas with a fermi-
onic MDF [33–35], and initially incoherent (insulating)
states of bosons [36,37] and fermions [38] can develop
quasi-long-range correlations during the expansion.
The question we are set to address is the fate of the

MDFs of fermions and pairs during an expansion in one
dimension, as described by the attractive Hubbard model.
We use a combination of numerical simulations, based on
the time-dependent density matrix renormalization group
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approach (t-DMRG) [39,40], and analytical (Bethe-ansatz)
results. We first show that the MDFs of majority and
minority fermions become stationary after a relatively
short expansion time, t� L0=J, where L0 is the initial
size of the cloud and J is the hopping amplitude. For strong
interactions, we explain this behavior in terms of a quan-
tum distillation process [41], as a consequence of which
FFLO correlations are destroyed during the expansion.
Finally, we discuss how these stationary MDFs can be
theoretically understood within the framework of the
Bethe ansatz. Our results suggest that the final form of
the MDFs of minority and majority fermions is related to
the distributions of Bethe-ansatz rapidities (a full set of
conserved quantities) of this integrable lattice system.

The Hubbard model (in standard notation [42]) reads

H0 ¼ �J
XL�1

‘¼1

ðcy‘þ1;�c‘;� þ H:c:Þ þU
XL

‘¼1

n‘"n‘#: (1)

As the initial state, we always take the ground state of a
trapped system. In the main text, we focus on a box trap,
i.e., particles confined to a region of length L0 whereas in
the Supplemental Material [43] we present results for
the expansion from a harmonic trap. We study lattices
with L sites, N particles, and a global polarization of
p ¼ ðN" � N#Þ=N, where N� ¼ P

‘hn‘�i. All positions

are given in units of the lattice spacing and momenta in
inverse units of the lattice spacing (@ ¼ 1).

The expansion is triggered by suddenly turning off the
confining potential, thus allowing particles to expand in
the lattice. We then follow the time evolution using the
numerically exact t-DMRG algorithm [39,40]. We use a
Krylov space-based time-evolution method and enforce
discarded weights of 10�4 or smaller with a time step of
�t ¼ 0:25=J. Our main focus is on the time evolution of
the three MDFs: the ones for majority (� ¼" ) and minority
fermions (� ¼# ), denoted by nk;� and the pair MDF, nk;p.

These functions are computed from the corresponding one-
particle (� ¼" , # ) or one-pair (� ¼ p) density matrices via
a Fourier transform

nk;� ¼ 1

L

X

‘;m

eið‘�mÞkhc y
‘;�c m;�i; (2)

where c y
‘;� ¼ cy‘;�, c

y
‘;p ¼ cy‘;"c

y
‘;# and � stands for " , # , p.

We normalize the MDFs so that
P

knk;� ¼ N� (note that

Np ¼ P
‘hn‘"n‘#i; i.e., it is equal to the total double

occupancy in the system).
For the expansion from a box, we focus on an initial

density fixed to n ¼ N=L0 ¼ 0:8. In our t-DMRG simula-
tions, which were carried out for N ¼ 8 and N ¼ 16
(L0 ¼ 10 and 20, respectively) and various values of U,
we were able to reach times of order tmax � 80=J for large
U and tmax � 40=J for intermediate values of U��4J.
tmax also depends on p, with small values of p being more
demanding.

Typical results for the three MDFs of interest are pre-
sented in Fig. 1 forU ¼ �10J and p ¼ 0:5 (corresponding
to N" ¼ 6 and N# ¼ 2; see the Supplemental Material for

more results [43]). During the time evolution, they are
all seen to quickly approach time-independent forms. In
Fig. 1(a), it is apparent that the MDF of the majority
fermions becomes narrower and develops small oscilla-
tions in the vicinity of k ¼ 0 as time passes. We find that
those oscillations become smaller in amplitude and get
restricted to smaller values of k after long expansion times;
i.e., they seem to be a transient feature not present in the
asymptotic distributions. The momentum distribution of
the minority fermions [Fig. 1(b)], on the other hand,
becomes broader during the time evolution.
The time evolution of the MDF of the pairs, depicted in

Fig. 1(c), yields information on the fate of FFLO correla-
tions in the expanding cloud. In the FFLO state, nk;p has

maxima at Q ¼ �ðkF" � kF#Þ [5]. These are visible in the

t ¼ 0 curve (dashed line), where �Q are marked by ver-
tical lines. As the comparison of nk;pðt > 0Þ with the initial
nk;pðt ¼ 0Þ shows, the peaks at �Q rapidly disappear, and

nk;pðtÞ becomes narrower. In addition, new and shallower

peaks form at k < Q. Since we do not find those peaks at
the same values of k for other values of N when N=L0 and
p are the same, and we do not find them for all values ofU,
N=L0, and p studied, they appear to be related to finite-size
effects. Hence, the double peak structure in nk;pðt ¼ 0Þ,
which makes evident the presence of FFLO correlations in
the initial state, is found to disappear during the expansion.
Even though the FFLO correlations are lost during the
expansion, the integral over the pair MDF, which equals
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FIG. 1 (color online). MDF for the expansion from a box trap
(U ¼ �10J, N ¼ 8, p ¼ 0:5, L0 ¼ 10): (a) nk;", (b) nk;#, and
(c) nk;p. The insets show the difference �� (� ¼" , # , p, see text)
between the MDF at a time t compared to the one at the largest
time reached in the simulation. The vertical lines in the main
panel in (c) mark the position of the FFLO wave vector
Q ¼ ��np.
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the total double occupancy, does not vanish. This implies
that not all interaction energy is converted into kinetic
energy and that some fraction of the original pairs remains
by the time the MDFs have become stationary, which in
experiments could be probed by measuring the double
occupancy.

In order to quantify how the three MDFs above approach
stationary forms, in the insets in Fig. 1, we plot ��ðtÞ ¼P

kjnk;�ðtÞ � nk;�ðtmaxÞj=
P

knk;�ðtmaxÞ vs t. These results

make apparent that the approach is close to exponential
for nk;" and nk;# [insets in Figs. 1(a) and 1(b)], whereas it is
power law for nk;p [inset in Fig. 1(c)] [44]. Remarkably, for

the parameters of Fig. 1, already at tJ � 10, all �� are
& 10%. This means that the stationary MDFs obtained in
this work should be achievable in current optical lattice
setups [32]. A comparison between expansions from differ-
ent box sizes suggests that the emerging time scale in the
observables with exponential relaxation is proportional to
L0. The origin of that time scale will be discussed below.

While we are focusing the discussion on the case of the
expansion from a box trap, we stress that the results for the
MDFs in an expansion from a harmonic trap are quite
similar (for an example see the Supplemental Material
[43]). Namely, we observe a comparably fast convergence
of the MDFs to a stationary form and the disappearance of
the peaks at�Q in nk;p. The latter indicates the disappear-

ance of FFLO correlations.
To understand how the FFLO state breaks down as the

gas expands, we calculate the eigenvector�0 of the pair—

pair correlator Pð‘;mÞ ¼ hc y
‘;pc m;pi that corresponds to

the largest eigenvalue. j�0j, shown in Fig. 2(a), unveils the
spatial structure of the quasicondensate in the initial
state: it has an oscillatory behavior with nodes (see also
Ref. [5]). In these nodes, the spin density has its maxima to
accommodate the majority fermions (Fig. 2(a); see also
Supplemental Material [43]), indicative of the spin-density
wave character with a modulation of ð2QÞ�1 in the FFLO
state. During the expansion, the nodes in j�0j disappear
while j�0j develops a maximum at L=2, exceeding

its initial value [see Fig. 2(b)]. The latter is a conse-
quence of a quantum distillation mechanism, described in
Ref. [41] forU > 0, which allows the unpaired fermions to
move away from the center of the system (i.e., they escape
from the nodes of j�0ðt ¼ 0Þj). Loosely speaking, during
first-order processes unpaired fermions exchange their po-
sitions with the pairs (a minority fermion hops towards the
center of the trap), allowing the former to expand while the
pairs move towards the center of the trap. This occurs over
a time scale proportional to L0 and inversely proportional
to J, which explains the time scale observed in the expo-
nential approach of the majority and minority fermions to
their stationary values. Once the unpaired fermions have
spatially separated themselves from the pairs, they form a
noninteracting gas whose MDF is stationary. On much
longer time scales (assuming jUj> 4J), we expect the pairs
to slowly expand as well. This transient dynamics of the
pairs may be the reason for the power-law, as opposed to
exponential, relaxation observed for nk;pðtÞ in Fig. 1(c).

In a recent work [45], extrema in the spin density
of the expanding gas were observed in numerical calcula-
tions using various approaches. By comparison of the
time dependence of the order parameter within a time-
dependent Bogoliubov–de Gennes approach, it was argued
that they are related to FFLO correlations. Our results show
that, in a lattice system, the nodal structure of the FFLO state
is ultimately lost as the system expands. Note, however, that
in Ref. [45] the main focus was on rather small polarizations
p [3,4,8] leading to a wide partially polarized core before
the expansion. We therefore expect the quantum distillation
mechanism to take much longer to depolarize the core than
what has so far been reached in numerical simulations [45],
leaving this case as an open question.
We are now in a position to explain the anticorrelated

behavior of nk;" and nk;# mentioned in the discussion of

Fig. 1. For large values of U, Np is essentially equal to

N# and is approximately unchanged during the expan-

sion, rendering the interaction energy almost time inde-
pendent. This implies that also the kinetic energy Ekin ¼
�2J

P
k coskðnk;" þ nk;#Þ is approximately conserved,

which is only possible if the two MDFs behave in the
opposite way during the expansion. The broadening of
the minority MDF nk;# with respect to the initial state is a

direct consequence of the spatial separation of excess
fermions from the pairs, leaving the latter confined in the
center of the cloud. Since in the center the local polariza-
tion decreases, the stationary form of nk;# is well approxi-
mated by the equilibrium one for equal populations
N" ¼ N# instead of N" >N# [43].
The fact that the MDFs become stationary after the

expansion from a box or a harmonic trap is in itself not
surprising, as in the limit of long expansion times, the
cloud becomes very dilute with, for the attractive case,
the typical interparticle distance being much larger than
the bound-state size. Hence, one may assume that pairs and
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FIG. 2 (color online). Natural orbital j�0j corresponding to the
largest eigenvalue of the pair—pair correlator Pð‘; jÞ (dashed
lines) and spin density hSzi i (solid lines). (a) t ¼ 0, (b) tJ ¼ 10.
These results are for U ¼ �10J, L0 ¼ 20, N ¼ 16, and
p ¼ 0:75, corresponding to N" ¼ 14 and N# ¼ 2.
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unpaired particles are essentially noninteracting. The MDF
in such an asymptotic limit should be determined by the
initial conditions right after the quench. For instance, for
generic models, the total energy (which is conserved dur-
ing the expansion) plays a fundamental role in determining
the expansion dynamics (see Ref. [46] for a related work
forU > 0). For an integrable model, such as the (attractive)
Hubbard model of Eq. (1), all integrals of motion are in
principle known from the Bethe ansatz and are conserved
during the expansion [42]. We argue below how to interpret
the shape of certain stationary MDFs in terms of such
integrals of motion. This is closely related to the previously
studied fermionization of the MDF of an expanding gas of
hard-core bosons [33–35].

For the model studied here, we first note that the for-
mation of a distinct minimum in the difference distribution
�nk ¼ nk;" � nk;# [see Figs. 3(a) and 3(b)] is reminiscent of

the corresponding distribution of real-valued charge rap-
idities (for intermediate U) in the ground state in a box.
From the point of view of the rapidity distributions, they
need to be determined right after turning off the trap, and
the subsequent expansion does not play any role; it is the
MDFs which will evolve and asymptotically approach the
former as the expansion proceeds [47]. We can calculate
the prequench values of the rapidities by numerically
solving the Bethe-ansatz equations for a system of size
L0 and open boundary conditions [48–50]. For the ground
state of the attractive Hubbard model, there are two types
of rapidities present: real- and complex-valued charge
rapidities (�� and ��), which correspond to unpaired
fermions and pairs, respectively (� ¼ 1; . . . ; N" � N#,
� ¼ 1; . . . ; 2N#, with �� and ��

� appearing pairwise).

To calculate the effect of the quench of the trapping
potential exactly is in principle possible but complicated in
practice [51], so we will resort to some simplifications. To
start, we assume that the number of pairs is conserved
during the quench, and thus no pure-spin excitations are
produced. Further, we use the observation that the overlap
between the prequench eigenstate and the postquench state
has a maximum amplitude for components of the latter
with the same set of rapidities [51]. We then identify,
asymptotically, the distribution of real-valued charge
rapidities with that of unpaired fermions (�nk) and of
the real part of complex-valued (string) charge rapidities
with that of minority fermions (nk;#) since they remain

paired. Finally, we model the quench by convolving the
prequench distributions �1 ¼ ð1=2ÞP��ðk� ��Þ and
�2 ¼ ð1=2ÞP��ðk� Re��Þ with the (periodized) kernels:
(i) L0sinc

2ðkL0=2Þ for the former and (ii) a simple
Lorentzian for the latter. The first choice is inspired by
the exact result for the release of a single particle from a
box, whereas the second choice is done for simplicity given
that the results are relatively featureless in comparison.
Illustrative results are shown in Fig. 3, and the agreement is
very good, especially away from the Brillouin-zone center.
Note that there are no fitting parameters in the case of �nk
and a single fitting parameter, the width of the Lorentzian,
in the case of nk;#.
In conclusion, we demonstrated that the initial FFLO

state is destroyed during the expansion of an attractively
interacting partially polarized 1D Fermi gas and that
direct signatures of the FFLO phase in the initial pair
MDF are washed out as a consequence of interactions.
Nevertheless, the sudden expansion is an interesting non-
equilibrium experiment that through the asymptotic form
of the MDFs yields information on the initial state. Our
analysis suggests that the shape of the MDFs can be
related to the distribution of rapidities, which constitute
a full set of integrals of motion for this integrable quan-
tum model and fully determine the initial state. Since we
showed that the MDFs of majority and minority fermions
as well as the one of pairs rapidly take a stationary form,
this should be accessible on typical experimental time
scales.
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