805 research outputs found

    An investigation of potential applications of OP-SAPS: Operational Sampled Analog Processors

    Get PDF
    The application of OP-SAP's (operational sampled analog processors) in pattern recognition system is summarized. Areas investigated include: (1) human face recognition; (2) a high-speed programmable transversal filter system; (3) discrete word (speech) recognition; and (4) a resolution enhancement system

    Real time flight simulation methodology

    Get PDF
    An example sensitivity study is presented to demonstrate how a digital autopilot designer could make a decision on minimum sampling rate for computer specification. It consists of comparing the simulated step response of an existing analog autopilot and its associated aircraft dynamics to the digital version operating at various sampling frequencies and specifying a sampling frequency that results in an acceptable change in relative stability. In general, the zero order hold introduces phase lag which will increase overshoot and settling time. It should be noted that this solution is for substituting a digital autopilot for a continuous autopilot. A complete redesign could result in results which more closely resemble the continuous results or which conform better to original design goals

    A polymorphic reconfigurable emulator for parallel simulation

    Get PDF
    Microprocessor and arithmetic support chip technology was applied to the design of a reconfigurable emulator for real time flight simulation. The system developed consists of master control system to perform all man machine interactions and to configure the hardware to emulate a given aircraft, and numerous slave compute modules (SCM) which comprise the parallel computational units. It is shown that all parts of the state equations can be worked on simultaneously but that the algebraic equations cannot (unless they are slowly varying). Attempts to obtain algorithms that will allow parellel updates are reported. The word length and step size to be used in the SCM's is determined and the architecture of the hardware and software is described

    Modeling of premixing-prevaporizing fuel-air mixing passages

    Get PDF
    The development of a computer program for the analytical prediction of the distribution of liquid and vapor fuel in the premixing-prevaporizing passage by the direct injection method is described. The technical approach adopted for this program is to separate the problem into three parts each with its own computer code. These three parts are: calculation of the two-dimensional or axisymmetric air flow; calculation of the three-dimensional fuel droplet evaporation; and calculation of the fuel vapor diffusion. This method of approach is justified because premixing passages operate at lean equivalence ratios. Hence, a weak interaction assumption can be made wherein the airflow can affect the fuel droplet behavior but the fuel droplet behavior does not affect the airflow

    Analytical modeling of operating characteristics of premixing-prevaporizing fuel-air mixing passages. Volume 2: User's manual

    Get PDF
    A user's manual describing the operation of three computer codes (ADD code, PTRAK code, and VAPDIF code) is presented. The general features of the computer codes, the input/output formats, run streams, and sample input cases are described

    Mutations of penicillin acylase residue B71 extend substrate specificity by decreasing steric constraints for substrate binding

    Get PDF
    Two mutant forms of penicillin acylase from Escherichia coli strains, selected using directed evolution for the ability to use glutaryl-L-leucine for growth [Forney, Wong and Ferber (1989) Appl. Environ. Microbiol. 55, 2550-2555], are changed within one codon, replacing the B-chain residue Phe(B71) with either Cys or Leu. Increases of up to a factor of ten in k(cat)/K-m values for substrates possessing a phenylacetyl leaving group are consistent with a decrease in K-s. Values of k(cat/)K(m) for glutaryl-L-leucine are increased at least 100-fold. A decrease in k(cat)/K-m for the CySB71 mutant with increased pH is consistent with binding of the uncharged glutaryl group. The mutant proteins are more resistant to urea denaturation monitored by protein fluorescence, to inactivation in the presence of substrate either in the presence of urea or at high pH, and to heat inactivation. The crystal structure of the Leu(B71) mutant protein, solved to 2 X resolution, shows a flip of the side chain of Phe(B256) into the periphery of the catalytic centre, associated with loss of the pi-stacking interactions between Phe(B256) and Phe(B71). Molecular modelling demonstrates that glutaryl-L-leucine may bind with the uncharged glutaryl group in the S-1 subsite of either the wild-type or the Leu(B71) mutant but with greater potential freedom of rotation of the substrate leucine moiety in the complex with the mutant protein. This implies a smaller decrease in the conformational entropy of the substrate on binding to the mutant proteins and consequently greater catalytic activity

    Preliminary experimental results for a cryogenic brush seal configuration

    Get PDF
    Preliminary fluid nitrogen flow data are reported for a five-brush, ceramic-coated-rub-runner brush seal system, where the brushes and the rub runner were placed at each end of a centrally pressurized multifunction tester ('back-to-back' set of brushes) and tested at rotor speeds of 0, 10, 18, and 22.5 krpm. After testing, both the brushes and the ceramic-coated rub runner appeared pristine. The coating withstood both the thermomechanical and dynamic loadings with minor wear track scarring. The bristle tips showed some indication of material shearing (smearing) wear. The Ergun porous flow equation was applied to the brush seal data. The Ergun relation, which required heuristic information to characterize the coefficients, fit the gaseous data but was in poor agreement with the fluid results. The brush seal exit conditions were two phase. Two-phase, choked-flow design charts were applied but required one data point at each rotor speed to define the (C(sub f)A x Constant) flow and area coefficients. Reasonable agreement between prediction and data was found, as expected, but such methods are not to be construed as two-phase-flow brush seal analyses

    Assessing the Challenges to a Geosynchronous Space Tug System

    Get PDF
    A space tug vehicle is designed to rendezvous and dock with a space object; make an assessment of its current position, orientation, and operational status; and then either stabilize the object in its current orbit or move the object to a new location with subsequent release. A subset of on-orbit servicing, space tug missions in the geosynchronous belt include stationkeeping of satellites which have lost attitude control and repositioning of satellites. Repositioning of spacecraft may be desirable as a means to rescue satellites launched into incorrect orbits, for the retirement of satellites into “graveyard” orbits, and for on-demand maneuvers that support flexible mission requirements. This paper aims to unify the political, legal, operational, and financial aspects of the space tug concept and highlight the challenges that stand in the way of an operational space tug vehicle. U.S. Space Transportation Policy is reviewed, and a space tug operation is recognized as an enabler of emerging national space transportation requirements. Customary international and United States laws are explored as potential constraining forces on future tug missions. A concept of operations in geosynchronous orbit, including parking orbit selection and approach strategies, is analyzed with emphasis placed on safety and reliability. Potential financing models and the issue of insurance for space tugs are discussed and identified as the principal challenges facing implementation of a space tug system. This paper offers a positive forecast for the future of on-orbit servicing and endorses continued government support for proof-of-concept missions

    Middle School Noncognitive Development in a Sample of Hispanic/Latino Youth

    Get PDF
    This study examined the development of noncognitive skills in a sample of 4,769 Hispanic/Latino students as they went through middle school and the first year of high school using ACT Engage 6-9, an assessment designed to predict student outcomes by measuring students\u27 behaviors and psychosocial attributes. The scales of Academic Discipline, Relationships with School Personnel, and Thinking before Acting were examined longitudinally through HLM analysis. The factors of gender and several indices of academic achievement were used to predict differences in students\u27 starting scores and growth over time. All factors related to academic achievement were significantly related to differences in students\u27 starting scores in 7th grade on all three scales. Mean scores in Academic Discipline and Relationships with School Personnel declined between 7th and 9th grades, but increased in Thinking before Acting. Some indices of academic achievement were also significantly related growth in all three models; as was gender in the scales of Relationships with School Personnel and Thinking before Acting. The results of this study are consistent with prior research and indicate that there is a significant relationship between academic indicators and noncognitive skills, and that this relationship influences how these skills develop over time. These findings underscore the importance of these skills and suggest that measuring noncognitive skills would provide insight into differences in individual academic achievement

    The Irish Opposition to English Oppression Under the Protector

    Get PDF
    corecore