SCHOOL OF ENGINEERING AND

APPLIED SCIENCE

University of Virginia
Charlottesville, Virginia 22901
A. Report
AN INVESTIGATION OF POTENTIAL APPLICATIONS OF OP--SAPS: OPERATIONAL SAMPLED ANALOG PROCESSORS
Final Report
Grant No. NSG-1223
Submitted to:
NASA Scientific \& Technical Information Facility
P. O. Box 8757
Baltimore/Washington Internationai Airport
Maryland 21240
Submitted by:
E. A. Parrish Associate Professor
E. S. MicVey
Professor
Report No. JVA/52s011/EE77/103

February 1977

RESEARCH LABORATORIES FOR THE ENGINEERING SCIENCES

Members of the faculty who teach at the undergraduate and graduate levels and a number of professional engineers and scientists whose primary activity is research generate and conduct the investigations that make up the school's research program. The School of Engineering and Applied Science of the University of Virginia believes that research goes hand in hand with teaching. Early in the development of its graduate training program, the School recognized that men and women engaged in research should be as free as possible of the administrative duties involved in sponsored research. In 1959, therefore, the Research Laboratories for the Engineering Sciences (RLES) was established and assigned the administrative responsibility for such research within the School.

The director of RLES-himself a faculty member and researcher-maintains familiarity with the support requirements of the research under way. He is aided by an Academic Advisory Committee made up of a faculty representative from each academic department of the School. This Committee serves to inform RLES of the needs and perspectives of the research program.

In addition to administrative support, RLES is charged with providing certain technical assistance. Because it is not practical for each department to become self-sufficient in all phases of the supporting technology essential to present-day research, RLES makes services available through the following support groups: Machine Shop, Instrumentation, Facilities Services, Publications (including photographic facilities), and Computer Terminal Maintenance.

```
A Report
AN INVESTIGATION OF POTENTIAL APPLICATIONS OF OP-SAPS: OPERATIONAL SAMPLED ANALOG PROCESSORS
Final Report
Grant No. NSG-1223
Submitted to:
NASA Scientific \& Technical Information Facilıty
P. O. Box 8757
Baltimore/Washington International Airport
Maryland 21240
Submitted by-
E. A. Parrish
Associate Professor
E. S. McVey
Professor
```


Department of Electrical Engineering RESEARCH LABORATORIES FOR THE ENGINEERING SCIENCES
 SCHOOL OF ENGINEERING AND APPLIED SCIENCE UNIVERSITY OF VIRGINIA
 CHARLOTTESVILLE, VIRGINIA

Report No. UVA/528011/EE77/103
February 1977
Copy No. 1

I. INTRODUCTION

This report presents results achieved during the July 1, 1975, through October 31, 1976, period on the application of OP-SAPs (operational sampled analog processors) in pattern recognition systems. The investigations included four areas: (1) human face recognition; (2) a high-speed programmable transversal filter system; (3) discrete word (speech) recognition; and (4) a resolution enhancement system.

Detailed information is avanlable in published journal articles (see Appendix), masters theses, and a doctoral dissertation to be completed shortly. Thus, this report summarizes those research projects that are documented elsewhere. In particular, the following publications are based on this research:

1. E. A. Parrısh, Jr., and E. S. McVey, "Implications of ChargeCoupled Devices for Pattern Recognition," IEEE Trans. on Comp., pp. 1146-52, Nov. 1976.
2. E. S. IfcVey and E. A. Parrish, Jr., "Charge-Coupled Devices Applied to Control and Pattern Recognition Systems," Mundo Electronico, Dec. 1976.
3. E. S. McVey and E. A. Parrish, Jr., "The Application ofChargeCoupled Device Processors in Automatic Control Systems," submitted to IEEE Trans. on Auto. Cont.
4. E. W. Evers, "Application of CCDs to Fourier Transform Welghted Transversal Filters," M.S. Thesis, University of Virginia, Sept. 1976.
5. C. S. Dreher, "Human Face Identufication Using CCD Discrete Fourler Transform Filters," M.S. Thesis in preparation, University of Virginia, Jan. 1977.
6. R. Scher, "A Programable Discrete Analog Processor for Pattern Recognition," Ph.D. Dissertation in preparation, University of Virginia, May 1977.

The last two publications will contain additional results obtanned after expiration of the present grant.

II. HUMAN FACE IDENTIEICATION

Introduction

Of particular interest in pattern recognition studies is the discrete Fourier transform and an analogous transform, the Chirp [5] z-transform [1], [2], [16]. Implementation of these transforms has, up until recently, been restricted to digital computer simulation via the FFT (too slow for realtime processing) or dedicated array processors (very expensive) [3]. Chargecoupled devices promise to circumvent both these difficulties [17] by offering real-time array processing at chip-set prices.

The theoretical use of transversal filters and transforms has been discussed in the Interature [4], [6], [14]. A working charge-coupled Chirp z-transform device has also been fabrycated and tested [7]. While this device is a laboratory model only, the path is clearing for commercial manufacture of CCD building blocks which perform standard transform and filter operations [8].

The pattern recognition system described herenn employs the discrete Fourler transform (DFT). The brief description which follows is intended as a refresher on the DFT and should help to make the included graphs easier to interpret [9], [10], [11].

1. The DFT is a sampled data system and, as such, imposes a finite, sampled record-length restriction on the data. The effect of this is to presuppose perioduc data (Fig. 2-1a).
2. Because of the mplied periodicity of the DFT, correlation (and convolution) requires augmenting the data record with zeros to twice the original record size (Fig. 2-1b).
3. The DFT is symmetric on the frequency axis (Fig. 2-1c). For example, for a 64-point transform

$$
\begin{aligned}
& \mathrm{f}_{0}=\mathrm{DC} \text { term } \\
& \mathrm{f}_{1}=1 \text { st harmonic }=\mathrm{f}_{64} \\
& \mathrm{f}_{31}=\mathrm{f}_{33}
\end{aligned}
$$

Tigure 2-1a. Implied Periodicity of DFT.

Figure 2-1. Discrete Fast Fourter Transform Illustatang Frequency Symmetry

Normalized Cross Correlation

The process employed with this pattern recognition system is that of normalized cross correlation. Given a two-dimensional pleture, $g(x, y)$, and a template, $t(x, y)$, a template matching scheme can be defined as

$$
\begin{equation*}
E(m, n)=\left(\sum_{i} \sum_{j}(g(i, j)-t(i-m, j-n))^{2}\right)^{1 / 2} \tag{2-1}
\end{equation*}
$$

Removing the square root and expanding

$$
\begin{equation*}
\left.E^{2}(\mathbb{m}, n)=\sum_{i} \sum_{j} g^{2}(1, j)-2 g(i, j) t(1-m, j-n)+t^{2}(i-m, j-n)\right) \tag{2-2}
\end{equation*}
$$

Note that, for any template, $t^{2}(i-m, j-n)$ is constant and, hence, can be subtracted from the index $E^{2}(m, n)$ with no loss of information. The term $\mathrm{g}^{2}(\mathrm{i}, \mathrm{j})$ is defined as the picture energy. If the picture energy varies only slightly over each scene, it, too, can be subtracted. Defining the resultant expression as the cross correlation between scene $g(x, y)$ and template $t(x, y)$, we arrive at

$$
\begin{equation*}
R_{g t}(m, n)=\sum_{i} \sum_{j} g(1, j) t(1-m, j-n) \tag{2-3}
\end{equation*}
$$

and the normalized cross correlation as

$$
\begin{equation*}
N_{g t}(m, n)=R_{g t}(m, n) /\left(\sum_{1} \sum_{j} g(1, j)^{2}\right)^{1 / 2} \tag{2-4}
\end{equation*}
$$

The normalized cross correlation coefficient is then defined as

$$
\begin{equation*}
\left(N_{g t}(m, n)\right)=N_{g_{k} t}\left(T_{x}, T_{y}\right) \tag{2-5}
\end{equation*}
$$

max over m,n

This may also be computed via transform techniques as

$$
\begin{equation*}
N_{g t}(m, n)=F^{-1}\left(G\left(f_{x}, f_{y}\right) \hat{T}\left(f_{x}, f_{y}\right)\right) /\left(\Sigma \Sigma g(I, j)^{2}\right)^{1 / 2} \tag{2-6}
\end{equation*}
$$

where F^{-1} implies the inverse Fourler transform, $G\left(f_{x}, f_{y}\right)$ is the Fourier
transform of $g(x, y)$, and $T\left(f_{x}, f_{y}\right)=F(t(-x,-y))$, i.e., the data is flipped about a diagonal axis prior to being transformed [12].
$\underline{\text { Generalized Recognition System Using } N_{g_{k} t}\left(T_{x}, T_{y}\right)}$
Given a set of samples $\left\{g_{1}(x, y) \cdots g_{N}(x, y)\right\}$, a normalized cross correlation recognition system could be structured as in Fig. 2-2. Before a system such as this could be configured, it would be necessary to answer the follownng questions:

1. How much data is necessary to establish a good template match? (i.e., what is the two-dimensional information bandwidth?)
2. Is the criterion satisfied that $\sum \sum g(i, j)$ be approximately constant over all scenes?
3. What degree of accuracy can be expected?

Bandwidth

To investigate question 1 it was decided to first obtain as much data as possible in order to observe the widest possible information bandwidth. A data acquisition system which sampled facial scenes taken from a closed circuit TV camera was employed. The sampling frequency was set at 203 KHz , which resulted in eight samples per video line. A data record of 230 lines was established, giving a total of 1,840 data points. The data was quantized via a 10-bit A/D converter. To satisfy the Nyquist sampling criterion the video was prefiltered to 100 KHz bandwidth.

A two-dimensional discrete Fast Fourier Transform DFFT) of a typical facial scene is shown in Fig. 2-3. (Note the symmetry along the horizontal and vertical lines, as mentioned previously. The horizontal axis contans eight spatial frequency components, while the vertical contains 256. Foldover occurs at the fifth and 129 th components, respectively.) As is evident, the power spectrum in the vertical dimension levels off after approximately 32 spatial harmonics. (Three $d B$ down occurs after the third harmonic.) Thus, we can conclude that facial scenes are essentially composed of low spatial frequencies.

$$
F^{-1}\left\{G_{l}\left(f_{x}, f_{y}\right) \hat{T}\left(f_{x}, f_{y}\right)\right\} / \Sigma L g(i, j)
$$

Figure 2. A Normalized Cross Correlation Recognition System

To further investigate the power spectrum the scene was augmented by adding zeros in the horizontal direction, while averaging together every four lines of data in the vertical. (This averaging process can be performed with almost no loss in information, because averaging is akin to low-pass filtering and will thus perserve the low spatial frequencies already determined to contain the most power.) Augmenting the data horizontally increases the frequency resolution in that direction. The result is shown in Fig. 2-4.

Low frequency terms are most apparent in Fig. 2-4. This has decidedly favorable practical aspects, since it implies the sampling rate can be reduced (and likewise, the number of samples necessary to maintain the power bandwidth), while retaining most of the information. Thus, slower and less expensive devices with less memory are required to adequately define a sampled facial scene.

Scene Power

The criterion of question 2 was Investigated by finding ($\left.\sum \sum \mathrm{g}(\mathrm{i}, \mathrm{J})^{2}\right)^{1 / 2}$ i J over a data base of 40 facial scenes. The results are given in Table 1 .

The average power in each scene (10-bit data) is 15233.74 , with a standard deviation of 659.06 or approximately four percent of the total power and thus satusfies Criterion 2.

System Implementation

To judge actual recognition performance a system was slmulated. The system flow chart is shown in Fig. 2-5. A detalled description follows:

1. FILE NAMES - AIl data files are placed on magnetic disk for quick access. Each file is assigned a number and the prefix AA for ease of identification.
2. NUMBER OF BITS - An option is given as to how many bits of the 10-bit (1,024 gray levels) words are to be used. The effect of using fewer bits is to increase the coarseness of the gray level quantization, by right-shifting the data word ($10-\mathrm{N}$) bits, where $\mathrm{N}=$ bit speczfacation (Fig. 2-6).

Figure 2-4. Facial Power Spectrum (16 x 128).

TABLE 1

Facial Scene Power $\left(\mathrm{g}(\mathrm{i}, \mathrm{J})^{2}\right)^{1 / 2}$ for 40 Scenes

PWTOT

Figure 2-6. Bit Reduction
3. CONDENSE AND/OR CONDENSE FOR CORRELATION - As has been previously mentioned, to perform correlation, the data must be zero filled in each direction to prevent wrap-around errors. A scene of 8×230 lines is first augmented with zeros to 8×256 to establish a modulo 2 radix in each direction. It is then augmented to 16×256 to provide zeros in the horizontal direction. Since the array handling size of the computer was effectively limited to 2^{11} complex data points, it was necessary to average every four lines together to reduce the matrix before zero augmenting in the vertical direction. (As mentioned in the discussion on information bandwidth, the effect of averaging us negligible.) The data was then vertically augmented to 16×128. See Fig. 2-7a.

The option is also provided to further reduce the data in the vertical durection by averaging together a specified number of lines. For example, specifying eight lines/average after the data has already been zero augmented for correlation would result in the data structure shown in Fig. $2-7 \mathrm{~b}$.
4. WINDOW - A choice of three window functions is provided [13]:
(1) Square window
(2) Hamming window, $w(t)=.54+.46 \cos \frac{2 \pi t}{T}|t|<\frac{T}{2}$
(3) Hanning window, $w(t)=.5+.5 \cos \frac{2 \pi t}{T} \quad|t|<\frac{T}{2}$

It should be noted that the windows are placed over only the measured data - not the zero-augmented sections.
5. FLIP - An option is provided to perform the operation $\hat{t}(x, y)=t(-x,-y)$. Note that correlation performed without this operation results in two-dimensional convolution, $F^{-1}\left(G\left(f_{x}, f_{y}\right) T\left(f_{x}, f_{y}\right)\right)=g(x, y) * t(x, y)$. After the FLIP option, the DFFT is taken on the available data base.
6. MAG, PEAK, OR NONE - An output listing can be obtanned of the entire power spectrum (MAGnitude), the highest value of the magnitude (PEAK), or the output can be suppressed (NONE). The scene power is also listed.

$\underset{\operatorname{con}}{\operatorname{lr}^{41}}$

(b)

Figure 2-7. Augmenting and Condensing Data for Correlation.
7. STORE FOR EXTERNAL USE - The transformed data can be stored under an arbitrary file name for later use.
8. FILTER - An option is provided to draw (via a Tektronix 4014-1 graphics interface) any two-dimensional filter. The filter's magnitude components are drawn in the frequency domain and then stored for future use. An example of a two-dimensional filter as shown in Fig. 2-8 and 2-9. Note that the filter is symmetric in frequency about the foldover polnt.
9. STORE FOR CORRELATION - The transformed data is stored in a reserve file to be used in all subsequent correlations and convolutions as a template.
10. CORRELATE - Correlation is performed by multiplying the stored transform (template $T\left(f_{x}, f_{y}\right)$ or $T\left(f_{x}, f_{y}\right)$) with the current transform $G\left(f_{x}, f_{y}\right)$ and then performing an inverse transform.
11. CORRELATION CONDENSED - This is a non-optional branch based upon whether or not the data was zero augmented for correlation, If not augmented, no correlation is performed; and the program returns to the sequence FILE NAME.

Example

1. Establish a template. (In all tests file AAl was used as the test template. See Fig. 2-10 for a listing of the template-forming sequence.) At this point, a file is stored which consists of a scene (8×230) augmented and reduced to 16×16, flipped, and transformed.
2. Establish a sequence for template matching (Fig. 2-11). All solid Innes indicate an established flow chart path, with the branch decisions printed next to the branch questions.
3. Enter a list of files to be used in the template matching procedure.

A typical output appears in Table 2. PWTOT is the scene power, while XHI is the peak value of the correlation.

Results

A brief note is necessary concerning the scene data. Scenes AAI through AA5 are all facial pictures of the same person, taken at dafferent times. The

$\stackrel{\square}{\infty}$

WRITE UERTICAL FILTER HARACTEPIGTICS.
Figure 2-8. Two Dimensional Filter Characteristic Projections.

TWO DIMENSIONAL FILTER CHARACTERISTICS FREQUENCG DOMAIN

C.T.Droher
 12-14-76 UUa

Figure 2-9. Two Dimensional Filter, Frequency Domain.

```
FILE HhalNE
\.lHIVחO qood {0
~
    HO. OF EITSP (:=10)
    10
GONLENSE FOR CORREL.HTIMN' IF %OU IO MOT DESIFE
TO GOHDENEE, EUT WIEH TIG CORFELGTE. TIFE %FUR YES. AND THEN
EMTER H 1 FOP NUMEER OF LINES FEP HIEPAGE.'
Y
# OF LINES PER AIJERHEO
```



```
1
FLIF'?
''
```



```
M
FILTEF?
    ETOPE FFT FGR CORRELHTIIN
Y
gopfelater
|
FILE Nm|E:
UOIIE
G
```


Fugure 2-11. Flow Chart Training Sequence.
JJSI (AAI)

1 BITS	CORR. COND?	LINES/AVE	WINDOW	FILTER?	PWTOT	XHI
10	Y	8	1	N	5089.6904	5089.6914
10	Y	8	1	N	$5 \emptyset 83.7793$	$5 \not 889.5762$
10	Y	8	1	N	5106.3447	5089.5215
10	Y	8	1	N	5116.9551	5089.4414
10	Y	8	1	N	5117.9023	$5 \emptyset 89.36 \emptyset 4$
10	Y	8	1	N	5514.4854	5073.4668
10	Y	8	1	N	5540. $0 \downarrow 29$	5073.0771
10	Y	8	1	N	5544.0469	5073.4121
$1 \emptyset$	Y	8	1	N	5545.9824	$5 \emptyset 73.0889$
10	Y	8	1	N	$5517.57 \emptyset 3$	$5 \emptyset 74 . \emptyset 771$
10	Y	8	1	N	5498.1279	5074.3711
10	Y	8	1	N	5496.8848	5¢75. $¢ 762$
10	Y	8	1	N	$552 \emptyset .9482$	5074.1221
10	Y	8	1	N	$5535.4 \emptyset 53$	5073.4385
10	Y	8	1	N	$5533.97 \emptyset 7$	$5073.748 \emptyset$
10	Y	8	1	N	5276.5439	5066.8555
10	Y	8	1	N	5373. 0781	5079.1094
10	Y	8	1	N	5378.2656	5079.4326
10	Y	8	1	N	$5379.68 \emptyset 7$	5075.3193
10	Y	8	1	N	5403.1885	$5 \emptyset 76.4 \emptyset 43$
10	Y	8	1	N	54 ¢2.7236	5ø78.627ø
10	Y	8	1	N	5444. 18879	5ø79. 0234
10	Y	8	1	N	5443.8291	$5 \emptyset 78.9687$
10	Y	8	1	N	$5444 . \emptyset 176$	$5 \emptyset 78.3379$
10	Y	8	1	N	5458. $\emptyset 986$	$5 \not 078.7969$
10	Y	8	1	N	$5778.9 \emptyset 33$	5647.7354
10	Y	8	1.	N	5784.4375	5¢46.9355
10	Y	8	1	N	5799.3320	5044.31Ф5
10	Y	8	1	N	$5796.542 \emptyset$	$5 \emptyset 43 . \emptyset 586$
10	Y	8	1	N	5618.2529	5081.7568
10	Y	8	1	N	5576.2373	5¢79.3525
10	Y	8	1	N	56ø1.2109	5079.8613
10	Y	8	1	N	5632.8457	5081.7168
10	Y	8	1	N	5635.1475	5081.5215
10	Y	8	1	N	5501.3447	5012.7930
10	Y	8	1	N	5469.0273	$5 \emptyset 19.47 \emptyset 7$
10	Y	8	1	N	$5461.376 \emptyset$	5ø21.7598
10	Y	8	1.	N	5459.4414	$5 \not 018.3887$
10	Y	8	1	N	5425.5361	5ø19,2129

subject was allowed to change his expression and move about but was instructed to stay within the camera window and focus and to display only frontal views.

Refer to Table 2. The correlation peaks (XHI) associated with scenes AAl-AA5 are very tightly grouped about a value of 5089 . All remaining scenes are below this value. A threshold of 5089 would generate a simple discriminant function capable of separating a correct identification (i.e., a match of person AAI wath any of his other facial scenes) from the remaining scenes with complete accuracy over the test data. See Fig. 2-12. Similar results are obtained using (1) reduced word size and (2) reduced data matrix. In all cases it was possible to obtann a linear discriminant function that would give 100 percent separation over the test data.

In order to evaluate the system performance a performance index (PI) was defined as
$\frac{\text { min over } w_{1} N_{g_{k} t}\left(T_{x}, T_{y}\right)-\max \text { over } w_{2}, N_{g_{k} t}\left(T_{x}, T_{y}\right)}{\left.\min \text { over } w_{1}, N_{g_{k} t} t_{x}, T_{y}\right)} \times 1000$
This index measures a normalized distance between the clustered correct correlation peaks and the closest mismatched peak.

The effect of varying the bandwidth (ines/average) and word size is shown in Table 3. Three significant aspects are immediately apparent:

1. For large word sizes, the PI peaks at lines/average $=2$ and then decreases markedly. Specifying two lines/average reduced the scene to 16 x 64 data pairs and allows a vertical spatual frequency resolution of 32 harmonics. It was pointed out previously that the power spectrum leveled off after the 32nd harmonic and thus agrees well with the concept of information bandwidth.
2. The PI is fairly constant over the values of 1 to 4 for lines/ average. While a peak is obtanned at 2, using half again as much data only slightly reduces the PI. Accurate results could thus be obtained with reduced system complexity and increased throughput.

Template: AA1
$\mathrm{X}=$ Scenes AA1-AA5
$0=$ Other Scenes

Figure 2-12. A Linear Discriminant

TABLE 3
Word Size versus Bandwidth

Lines/Average							
Bits	1	2	4	8	16	32	64
10	1.927	1.940	1.850	1.502	1.196	.6726	.3623
9	1.939	1.944	1.853	1.505	1.1976	.6738	.3634
8	1.950	1.953	1.860	1.517	1.201	.8172	.279
7	1.964	1.9692	1.876	1.526	1.217	.6871	.184
6	2.001	2.004	1.918	1.573	1.250	.7129	.3833
5	2.048	2.070	1.983	1.639	1.304	.7522	.313
4	2.278	2.308	2.212	1.905	1.427	.8402	.365
3	4.300	4.283	4.003	3.427	2.719	1.731	1.559
2	13.88	13.816	13.43	10.47	7.88	4.703	1.939
1	47.968	47.502	47.152	38.14	30.167	15.019	5.23

3. A large increase in the index results as the word size is reduced. This effect has immediate cost benefits:
a. Since excelient recognition can be achieved with only one bit, an inexpensive high-speed comparator can be substituted for a slower, more costly, lo-bit A/D. Also, the nozse benefits of large quantization levels are realized and thus loosen many potentially expensive noise reduction criteria.
b. In terms of storage a typical 16-bit word could hold two lines of video at elght samples/line, l-bit samples. An entire condensed array would fat into 256 words (128 x 16 data pairs (complex data) $=4048$ bits $=$ 256 16-bit words.) The cost reduction is obvious.
c. The Boolean algebra associated with single-bit multiplication and sumation can be easily and quickly handled with hardware devices. It is conceivable that the enture process could be carried out in near real-time circumstances, wath a 16-bit minz- or high-speed 8-bit microcomputer containang only limited core.

The above three points are worth repeating. They point the way to an inexpensive, fast, and highly relıable pattern recognition system that can be fabricated whth existing technology. Using charge-coupled devices would even further increase the system speed, although at an unknown cost index (measured against existing TTL devices) and availabilıty.

Filtering

Another aspect worth mentioning is that of high frequency variance. Consider the power spectrums pictured in Fig. 2-13. They appear remarkably similar, expecially at the high-power, low-frequency terms. This is antuitively appealing, since faces, after all, are quite similar. (General shape, two eyes, a nose, mouth, etc., are comon features.) Apparently it is small, high spaczal frequencies which contribute significantly to the differences.

To test this theory a high-pass filter was implemented (Fig. 2-8 and 2-9.) The result of this filter on various word sizes for eight lines/average

POWER SPECTRUM COMPARRISON
OF TWO DIFFERENT FACES.
(SCENES CORRELATION REDUCED TO 16×128. hamaing UINDOWED.)

NOTE: DC TERH SUPPRESSED

Figure 2-13. Power Spectra
is tabulated in Table 4. Apparently, facıal scene dafferences are contained in the upper spatial frequencres . Analog preprocessing of the incoming video signal could thus significantly improve the system's performance index.

It should be pointed out, however, that, if high frequencies are to be retained, the sampling frequency must remain high and the data matrix must remain large enough to resolve the higher order components. The price of increasing the PI via this technique is thus paid for with higher speed devices and larger memory requirements.

CCD Implementation

A proposed facial recognition system employing charge-coupled devices to perform transform operations is outlined in Fig. 2-14 [15]. Note that the data presented to the camera now becomes the template and not the stored scene.

If a pattern $G_{k}\left(f_{x}, f_{y}\right)$ is presented and results in a " 0 " or mismatched output, the scene pointer is indexed to the $K+1$ scene and the process repeated. Any successful match (a "1" output) stops the process, and access (in a security system, for example) is allowed. Access is denied if no match is achieved.

Summary

Recognition of faclal scenes can be achieved with high accuracy using normalized cross correlation via transforms. Detailed investigation of spatial frequencies reveals that accurate identification can be achieved using low sampling rates at reduced bandwidths and small array sizes. Performance can be improved considerably using coarsely quantized gray levels and preprocessed data, although the later imposes some restrictions.

Such "brute-force" technique for pattern recognition may now find practical applications because of new CCD devices like the Chirp z- transform circuit. Although the system described above could be implemented using all digital technology, the overall advantages of a CCD system make it far more attractive.

TABLE 4
Various Word Sizes for Eight Lines/Average

Word Size (Bits)	Performance Index
10	58.29
9	58.53
8	58.67
7	58.05
6	58.57
5	59.30
4	72.10
3	96.91
2	243.00
1	513.3

Figure 2-14. Proposed CCD Implementation

BIBLIOGRAPHY

1. N. Ahmed, T. Natarajan, K. R. Rao, "Discrete Cosine Transform," IEEE Trans. on Comp., pp. 90-93.
2. Charles M. Rader, "An Improved Aigorithm for Eigh Speed Autocorrelation and Application to Spectral Estimation," Digital Sig. Processing, p. 330, IEEE Press, N.Y., 1972.
3. Glenn D. Bergland, "Fast Fourier Transform Hardware Implementations An Overview," Digital Sig. Processing, pp. 349-53, IEEE Press, N.Y., 1972.
4. Charles M. Puckette, "Bucket Brigade Transversal Filters," IEEE Trans. on Comm., Vol. COM-22, No. 7, pp. 926-34, July 1974.
5. L. R. Rabıner, "The Chırp z-Transform Algorıthm," Digital Sig. Processing, p. 322, IEEE Press, N.Y.
6. Dennis R. Buss, Dean R. Collins, Walter H. Bailey, C. Richard Reeves, "Transversal Filtering Using Charge Transfer Devices," IEEE Jn1. of Sld. St. Cir., Vol. SC-8, No. 2, pp. 138-46, Apr. 1973.
7. Robert W. Brodersen, C. Robert Hewes, Dennis D. Buss, "A 550-State CCD Transversal Filter for Spectral Analysis," IEEE Jnl. of Sld. St. Cir., Vol. SC-11, No. 1, pp. 75-84.
8. Miles A. Copeland, Dipak Roy, John E. Beynon, Frank Dea, "An Optical CCD Convolver," IEEE JnI. of SId. St. Cir., Vol. SC-11, No. 1, pp. 84-87.
9. G-AE Subcommittee on Measurement Concepts, "What is the Fast Fourier Transform?" Digital Sig. Processing, p. 243, IEEE Press, N.Y.
10. G. D. Bergland, "A Guided Tour of the Fast Fourier Transform," Digital Sig. Processing, pp. 232-37, IEEE Press, N.Y.
11. Peter E. Blankenship, E. M. Hofstetter, "Digital Pulse Compression via Fast Convolution," IEEE Trans, on Acous., Speech, \& Sig. Processing, Vol. ASSP-23, No. 2, pp. 189-201, Apr. 1975.
12. Richard 0. Duda, Peter E. Hart, Patt. Class. \& Scene Anal., pp. 279-80, John Wiley \& Sons, N.Y., 1973.
13. William D. Stanly, Digital Sig. Processing, pp. 239-56 \& 226-27, Reston Publ. Co., Inc., Reston, Va., 1975.
14. Lloyd W. Martinson, Richard J. Smith, "Digital Matched Faltering and Papelined Floating Point Fast Fourier Transforms (FFT's)," IEEE Trans. on Acous., Speech, \& Sig. Processing, Vol. ASSP-23, No. 2, pp. 222-26, Apr. 1975.
15. Gault A. Antclifte, L. J. Hornbeck, W. W. Chan, J. W. Walker, Walden C. Rhines, Dean R. Collins, "A Backside Illuminated 400×400 ChargeCoupled Imager," IEEE Trans. on Electron Devices, Vol. ED-23, No. 11, pp. 9225-1232, Nov. 1976.
16. E. A. Parrish, Jr., E. S. McVey, "Implications of Charge-Coupled Devices for Pattern Recognition," IEEE Trans. on Comp., Vol. C-25, No. 11, pp. 1146-52, Nov. 1976.
17. T. G. Stockham, Jr., "High-Speed Convolution and Correlation," Digital Sig. Processing. p. 330. IEEE Press, N.Y., 1972.
III. A PROGRAMMABLE DISCRETE ANALOG PROCESSOR FOR PATTERN RECOGNITION

This project in the area of discrete analog processing anvolves the design and implementation of a high-speed unit capable of performing numerous transversal filtering operations on a fixed record of analog input samples. Such a system is necessary because CCD filters are not yet commercially available. The design has been executed using available off-the-shelf logic and discrete analog components to attain speed and flexibility of usage. At the same time, some sacrıfices in package count and circuit integrability have been made. The unit under construction is thus not a prototype but a tool for studying the properties and requirements of a class of similar systems which will employ CCDs. In addition, it also allows investigation of interface requirements for microcomputer control of CCD-type processors.

The mann subsystems are a programmable sequential filter (PSF) and a signal comparator. Of these, the former is far more complex and has recezved exclusive attention thus far. Both subsystems run as slaves to a microprocessor-based controller which, during operation, performs overhead functions periodically and, during test and development, provides a flexible man/machine interface.

The functional organization of the PSF subsystem is shown in Fig. 3-1. The microcomputer controls the PSF via an 8-bit status/command latch. In return it monitors the filter's computational completion status via an interrupt line. Digital logic regulates the loading (sampling) of an input analog signal with respect to number of samples and possible input source multiplexing, the necessary data being encoded in ROM. The samples are shifted into a bucket-brigade analog shift register with broadside readout capability. Other logic controls the subsequent computing phase in which the various transversal filter outputs are developed sequentially as analog outputs. That is, for an input vector x and a transformation matrix A the components of $A x$ are generated. The structure of the computation (i.e., dimensions and possibly the sparseness of A) is once more ROM-encoded, while the specific matrix elements are storable with 8-bit accuracy in a coefficient RAM under microcomputer control.

Figure 3-1. Functional Organization of PSF

To process the anput sample vector x its i components are read out of the broadsıde shift register taps through a fast analog multiplexer and presented sequentially as reference input to a multiplying D/A converter (MDAC). Simultaneously, the filter coefficients are read from RAM, and analog product outputs are generated which are summed by a resettable integrator. Data throughput is enhanced by overlapping the multiplication and summation operations. The readout process is repeated until all of the required filter outputs have been generated.

One feature thought to be desirable in a non-dedicated processor is automatic ranging of the input signal to the internal signal range most compatible with linearity of the analog memory device and maximum overall S/N ratio. The PSF analog input circuitry is capable of shifting and amplifying the input to achieve the desired internal signal range. The offset and gain required are stored as signals on high-impedance gates and are updated periodically by the response of feedback control loops to inputs representing maximum and minamum input signal levels. In addition, the PSF is designed to periodically store a declared numerical zero signal level on a holding gate in order to provide flexible four-quadrant capability. The tasks of controlling the autoranging and numerical-zero-acquisition circuitry are the "overhead" tasks previously mentioned which fall to the microcomputer. To date, the following steps in development of the PSF have been accomplished:

1. Completed design, construction, and test of mictocomputer and random logic control circuitry.
2. Test and measurement of input/output characteristics of the selected analog memory device.
3. Design, breadboard, and test of auto-ranging control loops and sample/hold circuits.
4. Breadboard of multiplier and resettable integrator circuitry.

Final assembly on circuit cards of the entire PSF is presently nearing completion. Remanning work includes in-circuit testing of the analog multiplexer, multiplier, and integrator and verification of control timing relationships and computational functions.

When completed, it is intended that this system will serve as a generalpurpose OP-SAP emulator. It will be used as a feature extractor and as a classifier in several different pattern recognition system studies.

IV. DISCRETE WORD RECOGNITION

Introduction

The potential of CCD technology for performing fast and complex processing of speech signals has generated interest in the possibility of voiceactuated command and control systems for aviation. The system envisioned would be capable of recognizing discrete words spoken by an operator for whom it had been previously trained. The commands would include such things as requests about altitude, range, speed, etc. Described below is an anvestigation involving a theoretical study of the application of certain CCD devices to signal processing techniques used in automatic speech recognition. Discrete word recognition systems generally use the same approach as any other pattern recognition system. This process includes the measurement of the input pattern, the creation of features from these measurements, and the identification of the pattern using the features. A slight shift in emphasis, however, may occur in the implementation of the two systems. In general, the major area of interest in discrete word recognation systems is the feature extraction process while using a relativeIy simple classification scheme. This may or may not be the case for a typical pattern recognition system. Since the classification scheme in a word recognition system is simple, a good feature set is imperative.

Schafer and Rabiner [1] report that both time domain and frequency domain feature sets can be used for speech recognition. Popular time domain-methods, however, still result in a spectral estimate of the speech waveform. Ichikawa [2] did a study on various parameter sets for speech recognition. Fig. 4-1 shows the relationship of these parameter sets. Ichikawa determined that of the four different parameter sets which he tested, the cepstral envelope technique yielded the best results.

A familiar method for feature extraction from speech data is to employ multiple bandpass filters to generate a rough spectral envelope. Hatan [3] describes a speech recognition system for a numerical control language. Feature extraction was performed by 24 bandpass filters over a range of $110-7000 \mathrm{~Hz}$. A recognitzon rate of 98% was achieved on 26 word

Figure 4-1. Relationship of Various Parameter Sets for Speech Recognition [6:22].
vocabulary having a well-defined syntactical structure. This system also boasted real time operation capability.

It was concluded from reports such as described above that the spectral envelope of a speech waveform was generally required in the feature extraction process. The spectral envelope may be used either exclusively as a parameter set, as a part of a parameter set, or to derive a parameter set. It was, therefore, decided to investigate the application of the Fourler transform CCD processor to speech waveforms. The actual device of interest is the power spectrum processor which uses the sliding Chirp z-transform algorithm. The possible availability of such a device in the near future was a large factor in the choice of the methodology [4].

The investigation was divided into two phases. The first phase involved the computer simulation of the $C C D$ power spectrum processor. The current lack of availability of the device made the simulation necessary. Sance the CCD device implements the Chirp z-transform with a sliding input data window, it was also necessary to generate the power spectrum via a fast Fourier transform routine to verify the results. The second phase included processing actual speech signals by the simulation routines. A routine used to determine the spectral content of an utterance from short time segments was also shmulated using CCD technology and tried on actual speech data. CCD Power Spectrum Device Sımulation

The charge-coupled device implementing either a discrete Fourier transform or a power spectrum uses the Chirp zntransform algorithm [5]. The discrete Fourzer transform is defined as

$$
\begin{equation*}
x_{k}=\sum_{n=0}^{N-1} x_{n} e^{-2 \pi i n k / N} \tag{4-1}
\end{equation*}
$$

By making the substitution

$$
\begin{equation*}
2 n k=k^{2}+n^{2}-(k-n)^{2} \tag{4-2}
\end{equation*}
$$

the discrete Fourier transform becomes

$$
\begin{equation*}
x_{k}=e^{-i \pi k^{2} / N} \sum_{n=0}^{N-I}\left(x_{n} e^{-i \pi n^{2} / N}\right) e^{I \pi(k-n)^{2} / N} \tag{4-3}
\end{equation*}
$$

This equation is known as the Chirp z-transform (CZT) equation for the discrete Fourier transform. The CZT consists of three basic operations in the following sequence:

1) the multiplication of a complex input X_{n} by a complex chirp waveform,
2) the convolution of this premultiplication and a complex chirp waveform, and
3) the multiplication of the convolution result and another complex chirp waveform.

When the power spectrum is desired the postmultiplication is not required. The equation for the power spectrum is

$$
\begin{equation*}
\left|x_{k}\right|^{2}=\left|\sum_{n=0}^{N-1}\left(x_{n} e^{-i \pi n^{2} / N}\right) e^{i \pi(k-N)^{2} / N}\right|^{2} \tag{4-4}
\end{equation*}
$$

For the case of real input signals, (4) can be expanded to become

$$
\begin{align*}
\left|x_{k}\right|^{2}= & {\left[\sum_{n=0}^{N-1}\left(x_{n} \cos \pi n^{2} / N\right) \cos \pi(k-n)^{2} / \mathbb{N}\right.} \\
& \left.+\sum_{n=0}^{N-1}\left(x_{n} \sin \pi n^{2} / N\right) \sin \pi(k-n)^{2} / N\right]^{2} \tag{4-5}\\
& +\left[\sum_{n=0}^{N-1}\left(x_{n} \cos \pi n^{2} / N\right) \sin \pi(k-n)^{2} / N\right. \\
& \left.-\sum_{n=0}^{N-1}\left(x_{n} \sin \pi n^{2} / N\right) \cos (k-n)^{2} / N\right]^{2}
\end{align*}
$$

The power spectrum equation is mplemented using multiplying digital-toanalog converters for the premultiplication and transversal filters for the convolution having impulse responses of

$$
\begin{equation*}
h_{m}^{\sin }=\sin \pi m^{2} / N \quad, m=0,1,2, \ldots, N-1 \tag{4-6}
\end{equation*}
$$

and

$$
\begin{equation*}
h_{m}^{\cos }=\cos \pi m^{2} / N \quad, m=0,1,2, \ldots, N-1 \tag{4-7}
\end{equation*}
$$

An N-point power spectrum device would require four transversal filters, each 2 N stages long. Also a true CCD power spectrum processor would require hardware to accomplish 50% blanking of the input. These restrictions led to the implementation of the sliding CZT for spectral analysis In CCD devices. The sliding CZT is defined as

$$
\begin{equation*}
x_{k}^{s}=\sum_{n=0}^{N-1} x_{n+k} e^{-2 \pi i n k / N} \tag{4-8}
\end{equation*}
$$

The sliding CZT equation expands as does the true CZT. Each Fourier coefficlent, however, is now computed over a slightly different set of mput data points. The advantage of using the CZT is that the filters can be \mathbb{N} stages long for an \mathbb{N} point spectrum and no blanking is necessary. The problem lies in the fact that if the input data is not periodic or stationary, the sliding CZT will not yield the exact spectral coefficients as does the true CZT implementation. A computer simulation package was needed to determine if this restriction would greatly hamper the use of the sliding CZT on speech waveforms.

The simulation package consusts of two major routines. The first routines calculates the power spectrum of N data points by a fast Fourzer transform algorithm. The other routine calculates the power spectrum using the sliding CZT algorithm. Both routines access input data from digital magnetic tape. The data is stored in single data item records in order to be able to change the spectrum resolution easily. Both routınes also contain graphic capabilities for ease of analysis.

The sliding CZT simulation program implements Eq. 4-5. The convolution operation is performed in a subroutine with the premultiplication and sliding data buffer operations being done in the main routine. Data windows
can also be applied to the input data; however, results are only included for rectangular data windows. The CCD simulation routine only includes the mathematics of the device and none of the electrical properties such as transfer anefficiency.

The software packages also includes a data acquisition routine. The routine samples the input at prescribed intervals and for a specified duration and stores them on magnetic tape in a format compatible with the simulation routines. This extra storage medium is necessary for ease of analysis and because the simulation routines are not capable of real time operation. Listings of the simulation routines are found in the Appendix. Speech Waveform Analysis Using Simulation Package

The real time speech data was acquired in the Computer Systems Laboratory by a Hewlett Packard 2100A computer system. The simulation package was also resident on this computer system. The computer system contains a general purpose data acquisition system capable of acquiring data samples at any rate up to 200 kHz . A block diagram of the system is shown in Fig. 4-2. The sampling process can be initiated by either the computer alone or a combination of the computer and an external syncronzzation signal. The system also contains selectable low-pass filters to remove alafsing problems. Special carcuitry was necessary to acquire speech data using the data acquisztion system. A block diagram of the speech interface is shown in Fig. 4-3 [6]. A portion of the interface was devoted to the generation of the sync signal. The speech waveform was passed through an automatic gain control (AGC) circuit to force the signal to occupy the full dynamic range of the A / D converter. Rectafication circuitry was also avazlable although it was not used for this investigation,

It is fairly widely accepted that systems for speech recognition can be band-limited to around 4 KHz , thereby requiring at least an 8 KHz , sampling rate. It was also determined that a one-half second interval is sufficient for most utterances of initial interest. These requirements then dictate the-processing of approxamately 4096 samples per utterance. Because of the large number of samples per utterance, the power spectrum of an entire record was impractical to obtain. A recognized way of

Figure 4-2. Data Acquisition System Block Program [6:43]

Device

Output
 44

Device Output

Figure 4-3. Block Diagram of the Speech Interface Box [6:50]
accomodating this amount of data is to break the sampling interval into sub-intervals. The size of each sub-interval is a function of the frequency resolution necessary for correct classification. The power spectrum of each sub-interval is then obtanned. This power spectrum is known as a periodogram. A smaller number of periodograms per utterance can be generated by the averaging of adjacent periodograms. These resulting periodograms are then used in most speech recognition systems to create the feature set.

Several one-half second utterances were input to the simulation package. The 4096 data samples were divided into sub-intervals of 128 samples each. This sample size produced a frequency resolution of approxmately 62 Hz . Ten adjacent permodograms were then averaged to form a new pernodogram in order to reduce the total number of periodograms in the entire utterance. Figs. 4-4 and 4-5 show the results of the first averaged peridogram of the utterance, "Alpha". Fig. $4-4$ shows the true power spectrum including the negative frequency terms. Fig. $4-5$ shows the result of the CCD simulation with its negative frequency coefficzents. The negative frequency coefficients were ancluded for comparison sance the sliding CZT algorithm does not guarantee that these coefficzents are merely a reflection of the positive coefficients. Figs. 4-6 and 4-7 are similar results of a different utterance.

Conclusions

The results of the simulation show that CCD power spectrum device may find a place in the field of speech recognition. The processing of periodogram averaging tends to cure a major pitfall of the sliding Chirp z-transform algorithm. The sliding CZT processor produces a power spectrum that is very similar to the true power spectrum for segments of speech. CCD devices may possibly rekindle interest in various techniques in speech recognition that were previously put aside for various reasons.

Figure 4-4. True Power Spectrum for the First Averaged Periodogram of "ALPHA"

Figure 4-5. Power Spectrum Using CZT for the First Averaged Periodogram for "ALPHA"

Figure 4-6. True Power Spectrum of the First Averaged Periodogram of "Bravo"

Figure 4-7. Power Spectrum via CZT for the First
Averaged Periodogram of "Bravo"

APPENDIX IV-A

Charge-Coupled Device Simulation Program

```
FTN4
    PROGRAM CCD
C
C
C
C
C
C
C
2 FORMAT("TYPE CCD WINDOW SIZE ")
    READ(1,*)N
    HIRITE (1,4ПØ)
40Ø FORNAT("TYPE # WINDOWS FOR COMPOSITE")
    READ(1,*)NW
    CALL WINDO(\varnothing,1)
    WRI IE (1,3)
3 FORMAT("TYPE TAPE FILE NUMBER")
    READ(1,*)IOP
    CALL PTAPE(8,IOP,0)
    WRITE(1,13)
13 FORMAT("TYPE ONE IF HEADER ON TAPE, ELSE Ø")
    READ(1,*)IHD
    IF(IHD.EQ.\varnothing) GO TO 14
    DO 6 I=1,9
    READ(8,7)(JUNK (J),J=1,10)
i FORHAT(10A2)
6 CONTINUE
    READ(8,8)(JUNK (J), J=1,1\varnothing)
F FORMAI(10I6)
14 CALL CONV (N,COS1,SIN1)
    CO 10I=1,N
    READ(8)A
    DATA1 (N-I+1)=A*COS1(I)/N
10 DATA2(N-I+1)=A*SIN1(I)/N
    LO 9 L=1,N
```

```
CNPOS(L)=0.
    LC=毋
11 DO 120 L=1,NW
    LC=LC+1
    DO 10\emptyset I=1,N
    D0 i6 I 2=1,N-1
    IQ=N-I2
    DATA1(IO+1)=DATA1(IQ)
    DATA2(IQ+1)=DATA2(IQ)
    READ(8)A
    DATA1(1)=A*COS1(I)/N
    DATA2(1)=A*SIN1(I)/N
    CALL CONV(N,COSI,SIN1,DATA1,DATA2,RESL)
    I I=I-1
    TABL(I)=RESL
    CMPOS(I)=CMPOS(I)+(RESL -CMPOS (I ))/LC
    CONTINUE
    IF(ISSW(Ø))1の2,101
    IF(L.NE.NW)GO TO 12Ø
    102 Bl=N-1
    CALL CHRS (27,12,128)
        CALL RANGE(Ø.,B1,Ø.,HIY,Ø,ILOG)
    CALL AXES (\varnothing.,\emptyset.)
    ISPY=B1/1a
    CALL TICK(0,\varnothing.,B1,ISPY,30,1)
    ISPY=HIY/10
    CALL TICK(1,0.,HIY,ISPY,30,1)
    IF(ISSW.(15)) 115,116
115 CALL GRAPH(ITYP,N,TABL)
    GOTO 118
116 CALL GRAPH(ITYP,N,CMPOS)
118 IF (ISSW(1))119, 120
119 WRITE(6,2\emptysetD)
20П FORMAT("SET CURSOR, STRIKE A KEY, AND INPUT LABEL:")
    CALL CURSI(IHD , IXPOS,IYPOS)
    CALL TPLOT(\varnothing,IXPOS,IYPOS)
    CALL CHRS(31,128,128)
    READ (6,21п) (NARE (I), I=1,4\Omega)
21\emptyset FORMAT(4QA1)
```



```
    WRI TE (6,220)
22% FORNAT("TYPE I FOR MORE LABELS, ELSE \emptyset")
    READ(6,*)IHD
    IF(IHD.EO.1) GO TO 119
120 CONTINUE
    WRI IE (6,12)
12 FORMAT("MORE DATA... I FOR YES ELSE ด ")
    READ(6,*)ILP
    IF (ILF.EQ.l )GOTO11
    END
C
C
```

```
    SUBROUTINE CONV(N,COS1,SIN1,DATA1,DATA2,RESL)
    DIMENSION COS1(1),SIN1(1),DATA1 (1),DATA2(1)
    DATAK/\emptyset/
    K=K+1
    IF(K.GT.1)GOTO 50
    NO 1g I=1,N
    II= I-1
    Cos1(I)=\operatorname{cos}(3.14159*I1*I|/N)
10 SINI(I)=SIN(3.14159*I | *I | N )
    RETURN
50 Sl=0.
    C1=त,
    S2=0.
    C2=\varnothing
    LO ig I=1,N
    Cl=Cl +DATA1 (I)*COS 1 (I)
    S1=S1+DATA1(I)+SIN1(I)
    S2=S2*DATA 2(I)*SIN1(I)
70 C2=C2+DATA2 (I)*COS1 (I)
    RESL}=(S2+C1)*(S2+C1)+(S1-C2)*(S1-C2
    RETURN
    END
    END$
```

APPENDIX IV-B

Fast Fourier Transform Power Spectrum Program

FTN4	
	PROGRAIA CCFT
C	
C	
C	THIS PROGRAM COMPUTES THE POWER SPECTRUM OF N DIMENSIONAL
C	RECORDS OF DATA. A COMPOSITE SPECTRUM CAN ALSO BE GENERATED.
C	
CCC	
C BIT 15 ON FOR INDIVIDUAL , OFF FOR COMPOSITE	
C BIT \emptyset ON FOR EACH I TERATION RESULT	
C	
C BIT I ON FOR LABEL	
C	
	DIMENSION ARRY (2,512), TABL (512), CMPOS (512)
	DIMENSION JUNK (10), MAME 40$)$
	COMMON IS1,IS2,IS3,IS4,IS5,IS6,R1,R2,R3,R4,IS7,IS8,R5,R6
	INTEGER A
	REAL ISPY
	WRITE (1,500)
500	FORMAT("INPUT TYPE OF PLOT $-1 ., 0,1 ")$
	$\operatorname{READ}(1, *)$ ITYP
	WRITE (1,501)
501	FORMAT("INPUT HI Y")
	READ (1,*) HIY
	WR ITE (1,502)
502	FORMAT ("TYPE 1 FOR LOG, \emptyset FOR LIN")
	READ (1,*) ILOG
	WRI TE (1,2)
2	FORMAT ("TYPE FFT WINDOW SIZE")
	READ ($1, *) \mathrm{N}$
	WRI IE ($1,40 \square)$
400	FORMAT ("TYPE \# WINDOWS FOR COMPOSITE")
	$\operatorname{READ}(1, *) N W$
	CALL $\operatorname{WINDO}(0,1)$
	WRITE $(1,3)$
3	FORNAT("TYPE TAPE FILE NUMBER")
	$\operatorname{PEAD}(1,+)$ IOP
	CALL PTAPE(8,IOP, (0)
	WRITE (1,13)
13	FORMAT ("TYPE ONE IF HEADER ON TAPE, ELSE G")
	READ (1, *)IHD
	IF (IHD.EQ. $)$ GO TO 14
	D0 $6 \mathrm{I}=1,9$
	$\operatorname{READ}(8,7)(J \operatorname{UNK}(J), J=1,10)$
i	FORMAT (10A2)
0	CONTINUE
	$\operatorname{READ}(8,8)$ (JUNK (J) , J=1,1め)
8	FOR MAT (1016)
14	DO $9 \mathrm{~L}=1, \mathrm{~N}$

```
9
1 1
    LC=0
    LO 120 L=1,NW
    LC=LC+1
    DO 50 I=1,N
    REAL(8)A
    ARRY(1,I)=FLOAT(A)/N
5\emptyset ARRY(2,I)=\varnothing, Ø
    CALL FFT(ARRY,N,-1)
    DO 55 I=1,N
    TABL(I)=ARRY(1,I)*ARRY(1,I) +ARRY (2,I)*ARRY (2,I)
55 CMPOS(I)=CIKPOS(I)+(TABL(I)-CMPOS(I))/LC
    IF(ISSW(\emptyset))1Ø2,1ด1
1G1 IF(L.NE.NW)GO TO 120
102 B1=N-1
    CALL CHRS(27,12,128)
```



```
    CALI AXES (Ø.,Ø.)
    IS PY=B1/1\emptyset
    CALL TICK(\emptyset,\varnothing.,B1,ISPY,3\emptyset,1)
    ISPY=HIY/10
    CALL TICK(1,0.,HIY,ISPY,3Ø,1)
    IF(ISSW(15))115,116
115 CALL GRAPH(ITYP,N,TABL)
    GOTO 118
116 CALL GRAPH(ITYP,N,CMPOS)
118 IF (ISSN(1))119, 120
119 WRI TE(6,2\emptyset\emptyset)
2ศด FORMAT("SET CURSOR, STRIKE A KEY, AND INPUT LABEL:")
    CALL CURSI(IHD , IXPOS,IYPOS)
    CALL IPLOT(Ø,IXPOS,IYPOS)
    CALL CHRS(31,128,128)
    READ(6,210)(NAME(I),I=1,40)
210 FORMAT(4GA1)
    WRITE(1,210)(NAME(I),I=1,40)
    WRITE(6,220)
22ด FORVAT("TYPE I FOR MORE LABELS, ELSE g")
    READ(6,*)IHD
    IF(IHD.EQ.1) GO TO 110
120 CONTINUE
    WRITE (6,12)
12 FORMAT("MORE DATA... 1 FOR YES ELSE Ø ")
    READ(6,*) ILP
    IF (ILP.EQ.1 )GOTO11
    END
C
C
    SUBROUTINE FFI(DATA,NN,ISIGN)
    DIMENSION DATA(I)
    SIGN=FLOAT(ISIGN)
    N}=2*N
    J=1
```

```
    DO 5 I=1,N,2
    IF(I-J)1,2,2
l
    TEMFR=DATA ( }\textrm{J}
    TEMFI=DATA (J+1)
    DATA(J)=DATA(I)
    DATA}(J+1)=\operatorname{DATA}(I+1
    DATA(I) =TEMPR
    DATA(I+1)=TEMPI
    |=N/2
    IF (J-M)5,5,4
    J=J-M
    M=M/2
    IF (M-2.) 5,3,3
    J=J+7/
    mmAX=2
    IF (NMAX-N ) 7,9,9
    ISTEP=2+MMAX
    ZAM=FLOAT(MMAX)
    DO 8 M=1,MMAX,2
    THETA=3.141592*FLOAT(M-1)/ZAM
    NR=COS (THETA)
    ARG=1. -WR *WR
    IF (ARG) 10,11,11
10 ARG=0.
11 WI=SIGN*SQRT(ARG)
    DO 8 I=M,N,ISTEP
    J=I +MNAAX
    TEMPR=WR*DATA (J) -WI *DATA (J+1)
    TEMPI =WR *DATA (J+1) +WI *DATA(J)
    DATA(J)=DATA(I)-TEMPR
    DATA(J+1)=DATA(I+1)-TEMPI
    DATA(I)=DATA(I) +TEMPR
    DATA(I +1)=DATA(I+1)+TEMPI
    MMAX = IS TEP
    GO TO 6
    RETURN
    END
    END$
```


BIBLIOGRAPHY

1. Schafer, Ronald W., Rabiner, Lawrence R., "Parametric Representation of Speech," in D. Raj Reddy (Ed.), Speech Recognition, Academic Press, Inc., New York, 1975, pp. 99-150.
2. Ichikawa, Akira, Nakano, Yasuaki, Nakata, Kazuo, "Evaluation of Varıous Parameter Sets in Spoken Digits Evaluation," IEEE Transactions on Audio and Electroacoustics, Vol. AU-21, No. 3(June, 1973), pp. 202-209.
3. Hatan, Jean-Paul, "A Practical Application of a Real-Time Isolated Word Recognition System Using Syntactic Constraints," IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. ASSP-22, No. 6 (December, 1974), pp. 416-419.
4. Benz, H. F., private communications, NASA, Langley, Va., 1975.
5. Rabiner, L. R. and Schafer, R. W., "The Chirp z-Transform," TEEE Transactions on Audio and Electroacoustics, Vol. AU-17, No. 2 , June, 1969, pp. 86-92.
6. McDonald, W. E., Jr., "Use of the ORS Feature Set for Automatic Speech Recognition," Masters Thesıs, University of Virgania, August 1976.

V. RESOLUTION ENHANCEMENT

Introduction

A novel application of charge-coupled devices (CCDs) for data processing to a unique electro-optical system has been studied and is presented in this part of the report. The electro-optical system employs a technique for binary monochromatic resolution enhancement beyond the capability of an indivadual sensor. The system utilizes a gray-level to binary-level conversion and sensor motion to extrapolate data values smaller than the individual sensor area resolution capability.

Such a system may find practıcal applıcation in such diverse fields as satellite and aerial reconnaissance to medical tomography or any application where greater resolving power is needed than a discrete sensor can provide. Since the technique requires only a sensor capable of graylevel information, any further advances in technology should only serve to further the technique's utility. With recent studies of multi-level logic systems [1] and wath CCDs inherent capability for multi-level output, a suggested projection would be a combination of sensor and pŕocessing system which could contribute to a "smart sensor."

Pursuing such a promising technique into realization, the implementation, however, poises some difficulty due to the characteristically large amounts of data generated. This data, when processed by McRee's technique [2], becomes bulky. A paper by Henderson and McVey [3], discussed later, proposes a more sophisticated algorithm which alleviates some of the conditions imposed by McRee at the expense of even more data manipulation and storage. A mode of reducing such manipulation or immense storage, yet not at the expense of the improved Henderson technique's benefits, is deemed necessary. Such a mode of reducing the manipulations or storage might exist in the form of a filtration process occurring at some location in the system. With data available in either sequential or block information, partıcularly if a square matrix or picture sensory array is used, a two-dimensional filter or a high-speed sequential filter would be indicated. With high speed, low power/density dissipation, and analog and digital processing, CCDs appear to be ideal for this application. This
is remforced by their flexibulity in assuming the form of enther a twodimensional or high-speed sequential filter.

This application shall be approached in this report by first presenting and exploring McRee's technique [2] into the detalled phase of an example. Next, Henderson's algorithm [3] shall be presented in a similar manner wath the last part of the presentation being devoted to the practical application of CCD technology. The practical application phase is the major topic presented and will be pursued in depth as various segments of the research are developed.

The presentation of the developed research shall progress through five phases. Phase one introduces previous research effort by McRee, et al. In phase two, several possible CCD applications for the enhanced resolution system are developed with phase three conslsting of the phase two applications presented as examples to illustrate the IImitations of each applicathon. Sources of error in the system algorithm and in the device implementation will be discussed in the fourth phase. The last phase concludes the report with a summary, recommendations, and conclusions based on the illustrative examples.

In the method for enhancing resolution in electro-optical systems with a multi-level output that has been presented by McRee and McVey [2], the resolution enhancement entails special logic circunts which allow discrimination of events smaller than the area of the discrete sensor. In a spatial transformation of numeric systems, gray-level information of a fixed resolution is mapped onto a binary-level system with a resulting resolution greater than that of the gray-level system. McRee has formulated a linear transformation equation

$$
\begin{equation*}
\mathrm{S}=\mathrm{MT} \tag{5-1}
\end{equation*}
$$

for this conversion in addition to a technique for its realization, where S is defined as a vector composed of the elements $s_{r c}$ which are the sensoris output with r as row and c as column: M is defined as a $p \times q$ transformation matrix with $m_{i j}$ elements and $p<q$ with p sensors and q outputs; and T is
defined as a vector composed of the elements $t_{i j}$, where I is row and J is column in the target area.

McRee's technique typically utilizes a solid-state, electro-opt,ncal sensor array with an individual sensor area A and side length d, where A $=d^{2}$. Refer to Fig. 5-1. In the examples, a five discrete level output sensor with a resolution 1 mprovement of $4: 1$ is assumed.

Positioning a gridwork over a target area and establishing a direction of travel, as depicted in Fig. 5-2, the array is first positioned as in Fig. 5-3. Samples of the target are processed, whereby the amount of light energy incident on the sensor is integrated; and this integrated input is passed to the special processing logic circuitry. The processed output, if exceeding 50% of the sensor's maximum output, is converted to a 1 state, if otherwise, to a ϕ state, i.e.,
$t_{i j}=\left\{\begin{array}{l}1, \text { if } 50 \% \text { sensor area is black } \\ \varnothing, \text { if otherwise }\end{array}\right.$
This value is stored, the sensor moved to the second position (see Fig. 5-3), and a signed algebraic addition is performed between this data and the previously stored value. This result is stored and the process continued untal the target has been completely sampled. The matrix of binary data thus formed is the enhanced resolution output.

McRee found that the enhanced resolution matrix was $p \times q$, where p $<q$ thus incurring a non-square matrix and the resultant anversion difficulties. To overcome this imposition McRee established a boundary condithon (refer to Fig. 5-4), where

$$
\begin{equation*}
t_{1 j}=t_{i 1}=1 \tag{5-3}
\end{equation*}
$$

which reduces his M matrix to a square and invertable matrix.
The only other apparent restriction is that there is a tendency for error to accumulate and propagate as is illustrated in the following theory

Figure 5-1. Sensor Area of Individual Sensor on Array

Figure 5-2. Sensor Array's Darection of Travel and Illustration of Target Grid

Figure 5-3. Sensor Array Motion for Two Sample Array Overlap

Sensor Array
Target Area with Boundary Condition

Figure 5-4. Sensor Array and Target Area with Boundary Condıtion Establıshed
and example. These restrictions are overcome by Henderson's application of estimation techniques to the data which shall be illustrated.

McRee defines the process of transforming gray information to enhanced binary information as image delımition. - As is obvious from Fig. 5-3, the enhanced binary resolution is obtalned from sensory overlap and the resultant increase in image threshold determination accuracy. This accuracy appears from the signed algebranc addition performed by the speczal logic circuits to ascertain the exact location of the sensor loci which, in effect, increases resolution.

A perfect sensor is the first assumption by McRee in his restrictions upon the technaque justified by several techniques for the elimination of dead space between sensors. That sensor area does not approach zero is another assumption which is based on practicality. The last two assumptions cause the most difficulty, as shall be discussed. The resultant non-square matrix problem is overcome by establishing boundary conditions; and, by assuming an error-free or nolseless transformation commencing at the boundary, McRee Introduces a major source of error.

For the transformation matrix M and its subsequent unit vector columns \bar{m}_{J}, let there exist a coefficient I_{J} such that

$$
\begin{equation*}
I_{1} \bar{m}_{1}+1_{2} \bar{m}_{2}+\cdots \cdot+I_{q} \bar{m}_{q}=\bar{\emptyset} \text { for } j=(1,2,3, \cdot \cdot, q) \tag{5-4}
\end{equation*}
$$

as a test for linear dependence and has a set $1_{j}=\{-1,0,+1\}$. However, McRee sets any value $I_{j} \leq 0$ equal to zero, thereby reducing the set to I_{j} $=\{0,1\}$. Then, the linear transformation equation may be represented by an example.

Arranging a sensor array, as in McRee's paper and in Fig. 5-5, it must be pointed out that there must exist a complete overlap, either through exaggerated sensor motion or staggered sensors, for the results to be meaningful. For an example target image, as in Fig. 5-6, the following manipulations are performed from (1), $S=M T$,

$$
\begin{equation*}
S_{r c}(t)=\sum_{j=1}^{q} m_{i j} t_{I J} \tag{5-5}
\end{equation*}
$$

Figure 5-5. Staggered Sensor Array Shown Positioned Over Target Area

Figure 5-6. Target Area with Sample Target.
setting t as time for sensor positions, as in Fig. 5-7, and n as the number of columns in the sensor to be processed, it is seen that $p=n t+(n-$ $1) t=(2 n-1) t$ and $q=2 n t$ for the transformation matrix H. The equation
$\left[\begin{array}{l}\mathrm{s}_{11}(1) \\ \mathrm{s}_{11}(2) \\ \mathrm{s}_{11}(3) \\ \mathrm{s}_{12}(1) \\ \mathrm{s}_{12}(2) \\ \mathrm{s}_{12}(3) \\ \mathrm{s}_{21}(1) \\ \mathrm{s}_{21}(2) \\ \mathrm{s}_{21}(3)\end{array}\right]=\left[\begin{array}{llllllllllllllll}1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1\end{array}\right]\left[\begin{array}{l}t_{11} \\ t_{12} \\ t_{13} \\ t_{14} \\ t_{21} \\ t_{22} \\ t_{23} \\ t_{24} \\ t_{31} \\ t_{32} \\ t_{33} \\ t_{34} \\ t_{41} \\ t_{42} \\ t_{43} \\ t_{44}\end{array}\right]$
results. However, if boundary conditions, as in (5-4), are implemented, the equation above reduces to that of $(5-7)$, where $p=q=(2 n-1) t$, as illustrated in Fig. 5-8 and

Figure 5-7. Staggered Sensor Array Positions Shown for Each Discrete Sample Tıme Position.

Figure 5-8. Staggered Sensor Array with Sample Target Illustrating Boundary Conditions

$$
\left[\begin{array}{l}
s_{11}(1) \\
s_{11}(2) \\
s_{11}(3) \\
s_{12}(1) \\
s_{12}(2) \\
s_{12}(3) \\
s_{21}(1) \\
s_{21}(2) \\
s_{21}(3)
\end{array}\right]=\left[\begin{array}{lllllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
t_{22} \\
t_{23} \\
t_{24} \\
t_{32} \\
t_{33} \\
t_{34} \\
t_{42} \\
t_{43} \\
t_{44}
\end{array}\right]
$$

Inverting and performing the matrix multaplication, the equation above can be expressed as its components which are the enhanced binary resolution algebraic equations.

$$
\left[\begin{array}{l}
t_{22} \tag{5-8}\\
t_{23} \\
t_{24} \\
t_{32} \\
t_{33} \\
t_{34} \\
t_{42} \\
t_{43} \\
t_{44}
\end{array}\right]=\left[\begin{array}{l}
s_{11}(1)-3 \\
s_{11}(2)-s_{11}(1)+1 \\
s_{11}(3)-s_{11}(2)+s_{11}(1)-3 \\
s_{12}(1)-s_{11}(1)+1 \\
s_{12}(2)-s_{12}(1)-s_{11}(2)+s_{11}(1)+1 \\
s_{12}(3)-s_{12}(2)+s_{12}(1)-s_{11}(3)+s_{11}(2)-s_{11}(1)+1 \\
s_{21}(1)-s_{12}(1)+s_{11}(1)-3 \\
s_{21}(2)-s_{21}(1)-s_{12}(2)+s_{12}(1)+s_{11}(2)-s_{11}(1)+1 \\
s_{21}(3)-s_{21}(2)+s_{21}(1)-s_{12}(3)+s_{12}(2)-s_{12}(1)+s_{11}(3)- \\
s_{11}(2)+s_{11}(1)-3
\end{array}\right]
$$

Then, substituting values for the above

$$
S_{r c}(t)=\left[\begin{array}{lllllllll}
3 & 2 & 2 & 3 & 2 & 2 & 3 & 3 & 4 \tag{15-9a}
\end{array}\right]^{T}
$$

$$
\mathrm{T}=\left[\begin{array}{llllllllll}
0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 \tag{5-9b}
\end{array}\right]^{T}
$$

vectors result concluding the example (refer to Fig. 5-9).
McRee has made two assumptions which give rise to difficulties as they are generalized. With the first assumption noted before that gives difficulty, McRee assumes a boundary condition which reduces the transformation matrix M to a square matrix; however, such a boundary condition interferes with the practical implementation. The second troublesome assumption, that the transformation is error-free or noiseless, is seen from the algebraic equations previously described to propagate error in the recursive technique. Henderson proposes and justifies the removal of the imposing boundary conditions as well as ridding the model of the propagating error by application of estimation techniques to generate a pseudoinverse. The purpose of Henderson's technique was to elimanate the boundary conditions; however, a side benefit not discussed was the removal of the propagated and accumulated error.

Directing attention to the removal of these restrictions, Henderson begins with a presentation of the classical estimation model

$$
\begin{equation*}
z=H x+u \tag{5-10}
\end{equation*}
$$

where, $z=m \times 1$ observation vector, $H=m \times n$ mapping matrix, $x=n \times 1$ parameter vector, and $u=m x 1$ vector of random variables or noise. By the direct substitution of McRee's notation into the estimation equation (5-1) and (5-11), the only changes are the resultant treatment of the inverse transformation matrix

$$
\begin{equation*}
\mathrm{S}=\mathrm{MT}+\mathrm{u} \tag{5-11}
\end{equation*}
$$

Henderson treats the estimate as nolsefree and applies least squares to obtain

$$
\begin{equation*}
\hat{T}=M^{+} S \tag{5-12}
\end{equation*}
$$

Figure 5-9. Enhanced Resolution Sample Target Transformation of McRee's Technique from Samole in Figure 5-8.
where M^{+}is the pseudoinverse matrix of M, and \hat{T} is the estimate vector. Utilizing the maximum row rank property of M, the pseudoinverse is given by

$$
\begin{equation*}
M^{+}=M^{T}\left(M_{M^{T}}\right)^{-1} \tag{5-13}
\end{equation*}
$$

where the M^{T} matrix is not a complex matrix by prior definition. From the previous target example for McRee's technique, the sensor values are assigned (5-9a) and the pseudoinverse computations performed by TSO BASIC on a HP2100 time-share system resulting in

$$
T=\left[\begin{array}{lllllllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \tag{5-14}
\end{array} 0_{1}\right]^{T} .
$$

Several target transformations are illustrated in Figs. 5-10, 5-11, and $5-12$. The M^{+}matrix is computed only once, and ($5-14$) can be summarized by ($5-15$), where the number of coefficients is determined by the number of sensors and the resolution enhancement ratio, where k, the threshold of the image delimitation, is typically set equal to .5 and

$$
\begin{equation*}
t_{i j}=k \sum_{i=1}^{p t} m_{i j}^{+} s_{r c}(t) \tag{5-15}
\end{equation*}
$$

This equation is implemented as the design equation for the special processing circuitry and is suggestive of the transversal filter design equation (5-16) given by [4]

$$
\begin{equation*}
V_{d}(t)=\sum_{m=1}^{k} h_{m} d(t-m w) \tag{5-16}
\end{equation*}
$$

where w is the tap delay, k is the number of taps, h_{m} is the weighting coefficient, t is the sample interval, d is the input sample voltage, and $V_{d}(t)$ is the filtered output voltage.

The combination of the techniques of McRee and Henderson has progressed to the stage of a practical implementation. The implementation from the equation (5-15), as conceived by McRee, involves addition and multiplication as well as an analog-to-dagital conversion for each sensor as per the flow

Figure 5-10. Transformation Example of Henderson's Algorithm.

Figure 5-11. Transformation Example of Henderson's Algorithm.

Figure 5-12. Transformation Example of Henderson's Algorithm.
chart process summary, Fig. 5-13. However, if analog information can be processed instead of digital, a great savings in size and complexity could be achleved as well as to reduce the error inherent in quantization. In the transversal filter equation (5-16), with its continuous data sampling nature, this achievement is apparent. Therefore, the design equation (5-15) implemented as a transversal filter would be an obvious realization; and, with CCDs, several design realizations of transversal filters [4, 5, 6, and 7] have been accomplished.

System Designs

Transversal filters will be used in the implementation. A general form of the transversal filter is shown in Fig. 5-14 and is described by

$$
\begin{equation*}
V_{d}(t)=\sum_{m=1}^{k} h_{m} d(t-m w) \tag{5-16}
\end{equation*}
$$

as given previously. This configuration uses a normalized electrode tapped a proportional amount across the width corresponding to the ratio [8]

$$
\begin{equation*}
\left(1+h_{m}\right) /\left(1-h_{m}\right) \tag{5-17}
\end{equation*}
$$

where h_{m} is a coefficient of range $-1<h_{m}<+1$. The ratio results in the difference amplifier output [8] of

$$
\begin{align*}
v_{\text {out }} & \alpha \sum_{m=1}^{k} 1 / 2\left(1+h_{m}\right) Q_{m}-\sum_{m=1}^{k} 1 / 2\left(1-h_{m}\right) Q_{m} \\
& =\sum_{m=1}^{k} h_{m} Q_{m} \tag{5-18}
\end{align*}
$$

where h_{m} is the weighting coefficient, and Q_{m} is the input charge sample in the cell. From (5-16), the function $d(t-m w)$ implies a time delay or a sample storage. The term transversal filter is applied to this general class of device, particularly where a storage array is implied and the data shifted into the register is not part of a contmuous input. Consequentially, the classacal defznition of the use of the filter as a signal detector or emphasis device shall not apply. Instead, discrete sensor

Figure 5-13. Simplıfied Flow Chart of McRee's Technique

Figure 5-14. Typical Weighted Tap Transversal
Fulter Arrangement [4].
values processed in a matrix format where each sensor output for a sample is weighted by a coefficient, then summed wath the remaining weighted sensor values to form an element output, shall be termed a transversal filter or Just filter.

To Increase the flexibility of the transversal filter, adjustable tap weights implemented in place of the fixed tap weights would realize a programable filter. Several techniques for realizing a programmable transversal filter have been implemented $[4,6,9,10]$. As mentioned in Section III, none are available as off-the-shelf components.

Considering the most direct method or a minimal design and maximal hardware, there are two mmediate approaches to a direct implementation of which one would be the application of one transversal filter to each output element as shown in Fig. 5-15. Such a design would employ a maximal number of filters; and, as seen from the figures, there are many modes of data input and output. Utilizing a maximal filter design would result in the highest throughput of data, particularly if parallel input/output' structures are adopted; however, the expense of such a high data rate is increased circuit density. It becomes apparent from minimal size limitations in CCDs and the consequential trade-offs between accuracy, error, and size that the ensuing number of filters would increase with the dimensionality of the pseudoinverse M^{+}. Since, in the future, there will undoubtably be an increase in technological capabalıty and the demand for higher speed processing shall continue, the maximal filter design will be used to introduce the design examples and discussion.

With the processung of information in an analog form, an immediate savings in a conversion unit (A/D) per sensor, as proposed by McRee, is realized; whereas, if CCD technology is employed in the sensor and processing circuitry, a direct interface is then possible. A one-to-one correspondence between the filter and resolution element is best fulfilled whth fixed tap weights in a transversal filter where each coefficient represents a column element in a row or the pseudoinverse M^{+}. The transversal filter, as described by (5-16), then sums the weighted elements which are shifted along the weighting delay line until all samples are

Figure 5-15. System Design Utilizing a Transversal Filter per Output Element
present in correct order. The output is strobed at the proper instant to either load a multiplexor for a serlal output which would ease the conversion to a standard IV transmission pattern or load parallel output buffers. A bonus evident in the output circuitry is that no additional clock speed is required in the serial multiplexor scheme, since there is a finite time period between successive conversions through the filter, as illustrated by the timing dlagram in Fig. 5-16. The timing diagram can be expressed by

$$
\begin{equation*}
\text { CONPLETE SAMPLE CONVERSION TTME }=T_{c}=\frac{d}{f_{s}} \frac{f_{c o}}{f_{c s}}=\frac{d}{f_{S}} \tag{5-19}
\end{equation*}
$$

where $f_{c s}$ is the shift clock frequency for the filter, f is the sensor sample rate, d is the sensor resolution enhancement factor, and $f_{c o}$ is the output clock frequency.

Two input schemes are indicated by the serial shifting nature of the transversal filter. One intuitive scheme would be a simple serial shift Into the transversal filter, as depicted in Fig. 5-17; the other scheme would involve a parallel-to-serial conversion with the effect of increasing the speed of the data transfer given the higher clock speed of the filter. Another scheme in the same venn of parallel loading might be realized if the filter is amiable in a density trade-off, as indicated in Fig. 5-18, to a loading in the filter area. Thus, having seen the maximal filter approach, an attempt at the maximal design and minmal hardware approach will be presented as another implementation.

Such an approach would require a single transversal filter with a variable programmable tap weighting, as described by several experimental research groups $[4,6,9,10]$. The same input and output schemes could be utilized with the output possessing an additional intermediate analog delay line storage to store the sums-of-products terms from each sensor sample position until the complete sample is obtained. The pseudoinverse M^{+} matrax must be loaded into the programmable fulter a row at a time. If row-by-row programming is to be the mode of operation, an analog output storage $1 s$ present, and the filter shift register readout is nondestructive and can be recurculated, then no addational input circuntry is necessary.

Sample Conversion Pulses

Figure 5-16. Taming Diagram Illustrating the Finite Time Available Between Sample Conversions.

Figure 5-17. Serial Loading of a Transversal Filter

Figure 5-18. Parallel Loading of a Transversal Filter

However, if the filter cannot be recirculated or af analog output storage is not present, then there must exist an input storage of sufficient size to retain a complete set of sensor readings corresponding to

$$
\begin{equation*}
S_{\text {In }}=n \times d \tag{5-20}
\end{equation*}
$$

where n is the number of sensors and d is the resolution enhancement factor (e.g., 4:1). There still exists the need of storage for the coefficient N^{+}matrix whose dimensionality has been previously discussed and examples presented. It is apparent that a larger amount of discrete storage cells would be necessary if signed digital storage were to be used instead of an analog value, owing to the greater radix values available. Digital storage technology is well established and continues to increase in density; however, there are only two basic types of analog storage currently available. The first type is evident in the analog delay line and is comparable to a dynamic storage unit or to a recirculating shift regaster. This dynamic storage requires a refresh scheme which could pose problems in its numbers, particularly, as a large number of sensors are employed; but, if externally accessible, there is the alternative of an adaptive filtering scheme. The second type is seen as a static type employing a MOSFET structure in conjunction with a charge storage cell [4, 9] or as a tap wexght where the tap area determines the value for a normalized charge whach is then merged into the data stream in the shift register (Fig. 5-19). If the MOSFET/capacitor structure is employed and a reset line is available, then there also exists the alternative of an adaptive filter scheme. With storage of either digital or analog values, there still is the mposing dimensionality of the pseudoInverse M^{+}matrix, as evidenced by a small sensor matrix of 20×20 elements requiring 144,400 coefficients to be stored. Another example of a 100 x 100 element sensor matrix requires 9.8×10^{7} coefficients which would serve to illustrate the exceeding large storage necessary for the coefficient matrix. There appears to be no easy implementation for the resolution enhancement technique; therefore, a further study of the coefficient matrix is deemed advisable.

Indeed, by studying the pseudoinverse M^{+}matrix, a pattern of values appears to emerge and even the number of discrete values in the matrix seems

Figure 5-19. Example of Simple Analog Storage Using a Proportional Veıghted Tap

Immted. In constructing the transformation matrix (5-21), a pattern of diagonalızed square unit submatrices is evident and such a pattern would Intuitively give rise to a comparable pattern in the pseudoinverse M^{+} matrix. A pattern does appear in the form of a mirror image reflected about a contral axis. Also, after several examples of various sensor array sizes were checked a consistent rule of thumb for the number of discrete absolute values for the coefficients is intuitively seen to be

$$
\begin{equation*}
V=2 n \tag{5-22}
\end{equation*}
$$

where n is the number of sensors. An extensive study of the pattern displayed in the pseudoinverse reveals further possible reduction by considering the submatrices defined by the boundaries in (5-23). If each sensor array sample is considered to be a major submatrix of n columns where n is the number of sensors, then, minor submatrices composed of redundant elements can be formed. Redundant rows can be coded as to the number of iterations in the minor submatrix by the addition of a sufficient number of digital buts. Such a technique could be called microcoding and, to manntain consistency, shall be so termed. An instant reduction of the dimensionality of the pseudoinverse to that of a microcoded coefficient array brings increased concentration on the pattern in the pseudoanverse. There even appears to be a mirror image in the coefficient values in the major submatrices, thereby offering a further reduction in dimensionality by continuing to microcode or by a hardware design. If microcoding were to be continued, then the storage space would have to be doubled for each addition bit, whereas, if a hardware controller were added with a recirculating control register containing the pattern sequence code, the storage array would not increase. Such hardware control sequence code shall be termed program macrocoding. There may be a combination of the two techniques that reduces the pseudoinverse dimensionality to the intuitively determined minimum of twice the number of sensors.

Beginning with the $2 n$ coefficient array storage necessary for the basic system, a maximal control microcoding would maintann the minimal $2 n$ storage area, whereas any additional coding in the form of program

NOTE: Values displayed are absolute. Signs form redundant patterns in the pseudoinverse and can be programmed by the control circuitry with a single bit for a sign.
microcoding would serve to swell the storage area. However, a type of storage for the controlled loading of the programable filter must be provided and this constitutes an increased storage area even though this appears to be of a minmmal nature due to the pattern redundances and the independence from the coefficient array. For the moment, further discussion of microcoding will be suspended n f favor of a brief look at a storage arrangement of the coefficient values in an attempt to clarify the reasoning for the bias in the resultant choice of a microcoding technique.

Recalling again the pseudounverse M^{+}matrix and the major submatrices indicated in Eq. (5-23), an apparent technique would treat the rows composing the major submatrix as words to be loaded into an intermediate register preparatory to programming the filter. Since there appears to be two different words per minor submatrix, two program or address counters and appropruately gating logic (decoding) to the intermediate register would be indycated by the unzt step increment change between word blocks in adjacent minor submatrices. Thus, a storage arrangement, as described, would maıntann minimal $2 n$ storage, yet ease the microcoding requirement by reducing the number of control sequences needed to replicate the pseudounverse M^{+}matrix.

Returning to the microcoding discussion, because the storage arrangement has simplified the controlifing requirements only the control microcoding will be discussed. Examinning the minor submatrices in the first major submatrix sample, a suggested axis of rotation would be approximately half the rows as depicted by the double lines in Fig. 5-20. A hardware design might incorporate a control counter to count to half the number of rows to generate an overflow which is routed to logic that converts the program or address counter to a down or reversed sequence counter thereby reversing the order of row display. The overflow pulse or charge packet also reroutes steering logic in the decoder to reverse the order of the colums thus mplementing a mirror image of half of the major submatrix. A control counter may be designed as a ring counter or racetrack shift register driven by clock pulses. Such a counter is easily realized in CCds [11]. Having presented a technique for implementing the murror image seemingly present in each major submatrix and a mode of reconstructing the

Figure 5-20. Pseudoinverse Matrix Illustrating Mirror Images in Major Submatrices.
rows for each sample major submatrix, the entire scheme could be depicted as in Fig. 5-22. It can be seen that the last remanning block to be described is the decoder of which several methods can be utilized to the greatest advantage. One such method would utilize a multiplexor to selectuvely load a serial shuft register in a coded sequence; another method would employ CCD register routing by a multiplexor in much the same manner as before, except that the loading would be done in a parallel fashion (Fig. 5-23).

A greater reduction in size might be achieved if the programable filter were deleted. Instead of shifting a normalized unit charge and parallel loading the output with the proportional analog value (Fig. 20), the sensor outputs are parallel loaded into the analog storage device. The tapped welghting electrodes are floating-gate amplifiers connected to the proper sagn on the differential current meter. Thas realization would use B storage devices of the length of n sensor cells, where B is defined as the sum of the number of distinct row values per major submatrix over the entire completed sample. Decoding and control circuitry would be implemented similar to that described for the programable filter resulting in a greater savings in complexity (Fig. 5-24).

Most attention has been directed at the carcuitry for a single major submatrix sample. Structures which incorporate the total coefficient matrix will now be considered. A direct technique would attempt to process all the sensor output samples through a single transversal filter, reducing the number of filters but increasing the processing time with a small addition to the circuitry. Another technique has been suggested [7] which employs a staged approach easnly seen if each major submatrix is thought of as a stage thereby separating the samples anto a natural division. The Westinghouse report [7] confines itself to the direct storage of each individual element in a coefficient array, and as previously seen, this would be an impractical array. Next, an example design will be given to test for an approximate maximum number of sensors that could be fabricated on a single chip contaming the signal processing carcuitry.

In an attempt to generalize the design, fixed tap weight shift cells and normal linear shift cell shall have a constant area A. The programmable

Figure 5-22. Illustration of Counter Arrangement to Implement a Mirror Image Coefficient Matrix

Figure 5-23. Block Diagram Illustration of Macrocoded Processing Array Utilizing a Programmable Filter and Storage Array

Enhanced
Outputs

Figure 5-24. Block Dlagram Illustration of Microcoded Processing Array and System with Single Storage Element Detail
tap weights shift cells, including the MOSFET structure, shall have an area $k A$, where k is some constant multiple of the area A whth a value greater than one ($k>1$) due to the added MOSFET structure. Each current sensing differentlal amplufier shall have a constant area to be designated by the value D. Area between shzft cells in a parallel loading scheme shall be assumed to be negligible.

The design examples shall be presented using total area as a criteria, thus assuming that the trade-offs between circuit complexity and processing speed are apparent. The sensor area and input/output circuitry shall be Ignored because these may be chosen independent of the processing circultry.

Retracing the suggested designs and beginning with a parallel structure involving a single fixed tap weight transversal filter per row it can be seen that each shift cell in each filter corresponds to an element in the pseudoznverse column. The area of the signal processing circuitry as depacted by Fig. 5-15, can be expressed by

$$
\begin{equation*}
\text { TOTAL AREA } A_{t I}=(r c) A+r D \tag{5-24}
\end{equation*}
$$

where r and c are the number of rows and colums, respectively, of the pseudolnverse M^{+}matrix. The next design employed a programmable transversal filter with (rc) absolute storage values, assumed to be analog fixed tap weight storage elements. Assuming that the decoding and control circuitry is negligible in comparison to the storage area (less than 10%), the area (design as in Fig. 5-25) is apparently

$$
\begin{equation*}
\text { TOTAL AREA } A_{t 2} \simeq 2(r c) A+k(c A) \tag{5-25}
\end{equation*}
$$

The lst designs involve microcoding schemes of which there were several varmations. The first scheme lllustrates the microcoding of each major submatrix as a mirror image (FIg. 5-26). Decoding and control circultry directs the loading of the programmable filter for each major submatrix.

$$
\begin{equation*}
\text { TOTAL AREA } A_{t 3} \simeq(B n) A+H+4 k c A \tag{5-26}
\end{equation*}
$$

Figure 5-25. Illustration of Design for Equation $A_{t 2}$.

Figure 5-26. Illustration of Design for Equation $A_{t 3}$.
represents such a scheme with a $4: 1$ enhancement where H is defined as the area due to the decoding and control circuitry, n is the number of sensors, and B the sum of the distinct row values per major submatrix over the complete sample. Attempting to characterize the best of the microcoding schemes, the last design discussed (refer to Fig. 5-24) shall be represented by

$$
\begin{equation*}
\text { TOTAL AREA } A_{t 4} \simeq[(B n) A+B D]+H \tag{5-27}
\end{equation*}
$$

where the difference between $(5-26)$ and $(5-27)$ is the deletion of the programmable filter. This is accomplished by the utilization of the storage elements as the processing circuitry.

The four design equations presented represent four different system implementations whth their consequentaal trade-offs. Since varıous considerations are encountered in each design resulting in different variables, a cross comparison would be difficult to make. However, a tabulation of the design equations is presented in Table 1 as well as an estimated area for a given number of sensors capable of being processed in a $4: I$ resolution enhancement. The area estimations are based on intultive trends evidenced in examples of each design conducted with a small number of sensors and on an assumed constant cell area. It can be seen from Table 1 that the microcoding scheme $\left(A_{t 4}\right)$ demands the least area for the number of sensors.

If larger arrays are to be processed than can be easily accomodated in a single device, then another type of staging would be required. Attempting to realize the "smart sensor" concept, the combination of the microcoding technique with the staging approach depucted in Fig. 5-27 could make such a realization possible. The addztional circuitry to process the overlapping external device sensors is easily justified by the trade-offs in information processing capability versus practical implementation size. Such a combination of techniques should remain useful regardless of future technology density improvements.

Error Conszderations

Having seen several practical implementations of the resolution enhancement scheme in designs realized by charge-coupled devices, attention
is now focused upon the systen's labilnties, particularly in the form of error. Reviewing the previous discussion on the error inherent in McRee's technique, the error shall begin with the error displayed in the systemoperating algorithm.

From (5-9), it can be seen that any inctial error would propagate and accumulate through to the completed sample. The boundary conditions imposed by McRee to facilitate matrax inversion was removed by Henderson in his algorithm utilizing a least squares estimation technique to generate a pseudoinverse which contans the system design values. Another mportant limutation removed by Henderson [3] was the accountability for a nolsy input which although assumed to approach zero for the realization has practical significance. However, if noise is present in the input, it could be characterized an the system input and will not be considered here. Henderson has experimentally determined the error for his algorithm to range from maximum of ezght percent to a negligible minimum. However, the system on which the measurements were made incorporated analog-to-digital converters to quantize the sensor outputs before being fed into the processing system. Henderson has noted that by increasing the number of quantization levels the accuracy improved signlficantly. The implıcation of this apparent trend is that quantization error is a significant contributing factor to the overall system inaccuracy. If the estimation error Is considered to be insignificant, then quantization error is the only remaining error source in the system algorithm. As mentioned before, if CCDs are utilized as a transversal filter, then analog sensor output is processed thereby reducing system error to the practical limitations of the device. Elimination of the conversion units (a/D) has two definite benefits, namely, to reduce system complexity and to significantly improve system accuracy. With this in mind, prominent CCD limitations and error sources should be considered, and, since discussions of error in CCDs have been published (17, 18, 19, and 20), only a brief survey will be included here.

Commencing with the most signzficant source of error, transfer inefficiency ε, it can be seen that, as a packet of charge is transferred through hundreds of cells, that some charge carriers would remain trapped

In substrate imperfections or be lost to recombination centers. As can be expected, the transfer inefficiency ε would be a function of clock frequency and also of device geometry; therefore, each device designed would have a different value ε with current ε approaching 10^{-5}. Another source of error would be that generated by nonlinearities in the charge injection and charge sensing, with the last prominent error source to be that of thermal generation. Injection and sensing nonlinearities can be treated in various ways as a trade-off between complexity and size of the circuitry versus nonlinearity. Thermal generation is also termed dark current and is most prominent when low clock rates, high temperatures, or numerous shaft cells are encountered. All the prominent error sources can be compensated for by several design techniques wath the accompanying trade-offs. There are other error sources beyond the device level, namely those encountered in device fabrication, such as photolithography resolution, all of which should be reduced with evolving technology.

A more definite characterization of error should be undertaken after an experimental device has been fabricated.

Conclusions and Recommendations

Several designs are presented using CCD technology to implement an unique enhanced resolution algorithm. System errors are expected to be largely dependent upon device error inherent in the fabrication except for sensor and algorzthm error. It has been shown theoretically that CCD technology can produce a slgnificant reduction in processing circuitry complexity (e.g. elimination of A / D conversion). A further savings could be realized by use of macrocoding techniques as shown by Table 1. The last design presented ($A_{t 4}$) indicates the best circuit economy even with conservative assumptions. Processing speed is a design trade-off between resolution enhancement, target or sensor maximum velocity, and circuitry complexity. However, processing time as expected to be in the tens of macroseconds for a single sample conversion. Experimental design and fabrication of devices should be undertaken to help define the best number of sensors for a bullding block or staged approach. Complex trade-offs between number of leads, redundant circuitry percentage, and other practical considerations make expermmental work desirable.
table 1

$\begin{aligned} & \text { Designa'Led } \\ & \text { Design } \end{aligned}$	Design Equations	Estimated Parameters for Five Sensors (square units)	Estimated Parameters for Three Sensors (square units)
$A_{t 1}$	$(\mathrm{rc}) \mathrm{A}+\mathrm{rD}$	$900 \mathrm{~A}+36 \mathrm{D}=1044$	$144 \mathrm{~A}+16 \mathrm{D}=208$
$A_{t_{2}}$	$2(\mathrm{rc}) \mathrm{A}+(\mathrm{kc}) \mathrm{A}$	$1800 \mathrm{~A}+25 \mathrm{kA}=1850$	$288 \mathrm{~A}+9 \mathrm{kA}=306$
$A_{\text {t }}$	(rc) $A+D$	$900 \mathrm{~A}+\mathrm{D}=904$	$144 \mathrm{~A}+\mathrm{D}=148$
$A_{t 4}$	$(\mathrm{Bn}) \mathrm{A}+\mathrm{BD}+\mathrm{H}$	$70 \mathrm{~A}+14 \mathrm{D}+\mathrm{H}=378$	$24 \mathrm{~A}+6 \mathrm{D}+\mathrm{H}=96$

Assumptions: 1) $D=4 \mathrm{~A}$
2) $\mathrm{H}=(\mathrm{Bn}) \mathrm{A}+\mathrm{BD}$
3) $k=2$
4) $A=1$

Table 1. Comprlation of Design Equations and Estimated Results for Three and Five Sensors with Assumptions of Support Circuitry Size.

The sensor array is assumed to sense and retain a sample of a displayed energy density field (e.g. light). By varying a threshold such that the value above the threshold is processed, a vertical binary mosaic representing the energy density can be formed. Preliminary studies showed that in thas manner gray-level information could be retained, but to an unknown degree of resolution. A vertical binary mosaic using a previous example is displayed in Fig. 5-28. However, it can be seen that a large degree of error is involved which is suspected to be due primarily to quantization.

With the ability to preserve gray-level information and the inherent angle information due to the sampling scheme and motion, another form of information may be avallable. By properly correlating the information mput into the system, a pseudo-dimensionalıty may be achievable giving rise to "depth" Information. Such speculations are reserved though future work.

In ezther case, it can be seen that the processing of analog information is highly advantageous, particularly from the low error viewpoint.

Figure 5-28. Example Transformation of Various Thresholds Resulting in a Pseudodamensionaluty.

1. T. A. Irving, Ir., Sajjan G. Shıva, and H. T. Nagle, Jr., "Flip-Flops for Multiple-Valued Logic," IEEE Trans. on Comp., Vol. G-25, No. 3, Mar. 1976.
2. G. J. McRee and E. S. McVey, "A Method for Increasing the Resolution of Discrete Output Optical Sensors," Proc. of the 9th Annu. IEEE Reg. III Conf., Apr. 1971.
3. K. C. Henderson and E. S. McVey, "A Method for Increasing the Resolution of Discrete Optical Sensors," IEEE Trans. Ind. Elct. \& Cont. Instru., Vol. IECI-21, No. 2, May 1974.
4. Carlo H. Sequin and Michael F. Tompsett, Charge Transfer Devices, Academic Press, Inc., 1975.
5. R. W. Brodersen, C. R. Hewes, and D. D. Buss, "A 500-Stage CCD Transversal Filter for Spectral Analysis," IEEE Trans. on Electron Dv., Vol. ED-23, No. 2, Feb. 1976.
6. John Mattern and D. R. Lampe, "A Reprogramable Filter Bank Using ChargeCoupled Device Discrete Analog-Signal Processing," IEEE Trans. S-S Cir., Vol. SC-11, No. 1, Feb. 1976.
7. M. H. White and W. R. Webb, "Study of the Use of Charge-Coupled Devices in Analog Signal Processing," Final Rprt., Westinghouse Def. \& Elct. Sys. Ctr., N00014-74-C-0069 Item A002, May 1974.
8. D. D. Buss, D. R. Collıns, W. H. Bailey, and C. R. Reeves, "Transversal Filterıng Using Charge-Transfer Devices," IEEE Jnl. S-S Cir., Vol. SC-8, No. 2, Apr. 1973.
9. D. D. Buss, W. H. Baıley, and A. F. Tasch, 'Signal Processing Applications of Charge Coupled Devices," CCD74 Int. Conf. Edinburgh, Proc., 1974.
10. A. Ibrahim, L. Sellars, T. Foxall, and W. Steenart, "CCDs for Transversal Filter Applications," Tech. Dig., Int. Electron Dv. Mtg.. Washington, D.C., Dec. 1974.
11. A. L. Lancaster and J. M. Hartman, "A recirculating CCD with Novel Input and Output Structures," Tech. Dig., Int. Electron Dv. Mtg., Washangton, D.C., 1974.
12. R. W. Brodersen, D. D. Buss, and A. F. Tasch, Jr., "Experımental Characterization of Transfer Efficiency in Charge-Coupled Devices," IEEE Trans. Electron Dv., Vol. ED-22, No. 2, Feb. 1975.
13. Hamdi El-Sassi and R. S. C. Cobbold, "On the Decay of Small Amounts of Signal Charge in Surface-Channel CCDs," IEEE Trans. Electron Dv,, Mar. 1975.
14. G. A. Clough, W. Kotyczka, and D. M. Erb, "Experımental Observation of Signal Degradation in Recirculating Charge-Coupled Devices," Tech. Dig., Int. Electron Dv. Mtg., Washington, D.C., 1974.
15. C. H. Sequin and A. M. Mohsen, "Linearity of Electrical Charge Injection in Charge-Coupled Devices," IEEE JnI. S-S Cir., Vol. SC-10, No. 2, Apr. 1975.

Figure 5-27. Illustration of Staged Staggered Sensor Column Array to Show Formation of Larger Arrays.

E
S. McVey
E. A Parrish *

The application of CCD (Charge-Coupled Device) processors to pattern recognition and control systems is suggested in this paper. Specific implementions for control systems are presented for linear time invariant, linear time varying, and nonlinear systems. Example structures are also presented for pattern recognition applications. Estimates of processing times are provided

F Both wi the School of Togancerang and Applied Science, University of Virginia. The work on which this paper is based was supported by the National Acinomtus and Since Administration, I angley Research Confer, under Giant
Number sG 1223 Petcedina Pages nat pages 111 - 117

Introduction

Recontly, a new form of charge transfer device called the CCD (ChargeCoupled Device) has been developed which processes discrete analog samples of data. The inherent manufacturing simplicity, small size, and low power allow the use of many stages in a single unit. This, coupled with their fast speed, makes practical the processing of extremely larger quantities of data in applıcations such as image processing. Although devices are not yet commercially avalable, familes are expected to emerge soon, thus, it $x s$ timely to consider their application in engineering systems

The inutral discovery of CCD's was announced by Bell Telephone Lahoratories on May 9, 1970 [1] Since then, commercial devices for optical signal detection, such as discrete element sensors [2], and for digital memorucs [3], have been marketed.

A charge-coupled device is a semiconductor component [4] capable of storIng quanlities of charge (called pachets) and transferring them between adjacent cells. Phis, in effect, becomes a dascrete analog delay line or shaft reglster the addition of nondestructive readout taps, along wath tap weights and on-chip summing, provides an analog processing capability of unioue polential.
'Another charge transfer devace, whach was the forerunner to CCD's, is the Rurhet Brigade Device (BBD) [5]. The BBD consists of a series of field effect Lransistors in which chaige packets are transferred from one cell to another. Inc $B A^{\prime}$'s re of less value for sophisticated signal processing and, thus, will not be considered in the sequel

For a detalled explanation of $C C D$ characteristacs and operation the reader 1 s referred 10 [6] Essentalally, they are composed of a substrate of
semiconductur material on which a thin insulation layer is placed. The cells In which the charge packets are stored are formed by depositing metal electrodes on to the insulator. This forms capacitors whach operate analogously to the (apacitors and switches shown in Figure l. When any swatch closes, charge is transfer red to an adjacent capacitor, and then the switch $1 s$ opened. With proper synchronzzation between swatches, charge transfer can be controlled. Of course, this representation is crude; but it is a convenient approximation of operation

In physucal electronic tems, when the electrodes are properly based with rospect to the substrate, potential wells are formed in wnach the charge is stored The charge transfer action is produced by charging the potentials Acrociated whth adjacent cells Charge is anjected Into the mput cell through a rmventional junctuon diode Operation of this diode an conjunction with the first cell allows sampling of the analog input signal, yielding a discrete analog roprosentation.

As might be expected, charge cannot be trinsfelred between cells without loss, since a fraction of the charge will be left behand, thus causing a reduction in the signal-to-nouse ratio. Typically, the transfer mefficiency ε is on the order of 10^{-4} to 10^{-5} at 1 MHz and increases rather rapady at higher frequencies.

The undque dascrete analog signal processing capadilities of CCDs may make praclacal pattern recognition systems whach, until now, have been only thoolctin possibulities because of the extramely large quantities of data to be piochsed Also, control system applications appear to be practical in syatcins of ${ }^{7}$ high order, such as where kalman filtering as required.

ORIGINAT PAGE OF POOR QUALITY

Basic Structures

Ihe most basic structure is a serial in/serial out (s]/SO) discrete analog deldy lune, which is shown in Figure 2a. The data are transferred fiom left to right at a rate determined by the clock, with a period T. The maximum time for a sainple to be in residence (delayed) is NT. Delays of 0.1 to 3 seconds at room tomperature are reported in the literature and calculations indicate that much longer times are possible if the tempeiature is reduced. There are many applications for this basic structure. It is also used as a buylding block in more complex components

A serial in/parallel out (SI/PO) structure is shown an Figure $2 b$. The luput signal is sampled and shifted as in a SI/SO device, but the content of each cell is available on a nondestructive readout basis. If tap weights are used in conjunction with current summing, it is possible to implement a number of useful operations which are considered later.

The parallel in/serial out ($\mathrm{PI} / \mathrm{SO}$) configuration is shown in Figure 2 c . It can be used for applacations such as multiplexing.

The structure of Figure 3 is likely to become a basic building bloch in the uear future. As shown, at consasts of a $5 I /$ So structure with tap wejghts and I ummer as mentaoned above, all on a single chip The current summang is casily and accurately accomplashed because of the basic way the structure operit:s. It operates as a nonrecursive or transversal filter, whose output at the $n^{\text {th }}$ clock period is the welghted sum of the previous k sampes,

$$
\begin{equation*}
g(n)=\sum_{1=0}^{k} h_{i} x_{n-1} n \geq k \tag{1}
\end{equation*}
$$

Fol c. mple, if the tap weights $h_{1} 2 n(1)$ define sumples of the tame anverse of a denirrd ulgnal, then the $C C D$ processor of Figure 3 is a matched filter. Or,

If the tap weights are set equal to samples of a given weighting function, then the structure can perform a discrete convolution. Finally, vector inner products can be computed by reading the output only at $n=k$, so that

$$
\begin{equation*}
g(k)=\sum_{I=0}^{k} h_{I} x_{k-1} \tag{2}
\end{equation*}
$$

By changing the order of the weights in Figure 3, the more familar form

$$
\begin{equation*}
g=\sum_{j=0}^{k} h_{j} x_{J} \tag{4}
\end{equation*}
$$

is obtained, which can be recognized as a linear discriminant function [7], a very useful tool in pattern recognition.

Fired tap weight transversal falleis are also being used to implement frequency domain processing. For çample, by employing the Charp z transform [8], (CDs can be used to implement discrete Fourier transforms which compute a 500-point power density spectrum [9]. By using CCD Fourier transfolm processors, convolution of two arbutrary waveforms can be accomplished through frequency domain multiplication.

Another form of CCD processor is under investigation which could prove to be very valuable to the structure of future anstrumentation systems. As shown in Figure 4 , thas filier allows the tap weights to be programmed electracally, thus mahing it applicable to adaptive control, tramable pattern classifiers, etc. The variable tap weight transversal filter is diffucult to implement and will piohobly not be avalable for some time. Nevertheless, it could be very importint to the development of new system architectures and so deserves attention (ven now.

Control System AppJications

Control systems can use CCD devices to make modeling calculations or for realizing required transfer functıons [10]. State space models are an example where matrix-type calculations are required. Suppose, for example, a linear tume invarıant system containing a Kalman filter is to be implemented Then, (a)culation of states at time $k+I$ based on states at time k must be made using the state tiansition matrix. The unforced system differential equation 15

$$
\begin{equation*}
\dot{x}=A x \tag{5}
\end{equation*}
$$

for which the solution is

$$
\begin{equation*}
\lambda(t)=e^{A(t-t 0)} x(t 0) \tag{6}
\end{equation*}
$$

For the discrote case of interest here, (6) becomes

$$
\begin{equation*}
x[(k+1) T]=\varphi(T) \lambda[k T] \tag{7}
\end{equation*}
$$

Wheie λ is an M-dimensional vector, A is an $n \times n$ matrix, T is the sampling perind, ϕ is the nan state transilion matrix, and k is a positive integer.

As $u s$ well known, (7) tahes the general form

$$
x[(k+1) T]=\left[\begin{array}{lllll}
\phi_{11} & \phi_{12} & \cdots & \phi_{1 n} \tag{8}\\
\phi_{21} & \delta_{22} & \cdots & \cdots & \phi_{2 n} \\
\cdot & & & & \\
\cdot & & & & \\
\cdot & & & & \\
\varphi_{n 1} & \phi_{n 2} & \cdots & \phi_{n n}
\end{array}\right][k T]
$$

where the riments of dre constants for the time anvaraant cises being (ancidered.

Implementation of equation (8) is shown in Figure 5. Each transversal filter is equivalent to the basic structure of Figure 3 , where the values of the tap weights are equal to the row components of the ϕ matrix, i.e., for the top filter, h_{k} equals Φ_{11}, h_{h-1} equals Φ_{12}, etc. This assures that the first component of the state, $x_{1}(k T)$, is fed in first, $x_{2}(k T)$ is fed in ncxt, etc. A typical cycle tame maght be $n+2$ clock periods to obtan the state $x(k+1) T$ an storage in the $P I / S O$ register from the $1 n a t a a l$ value $x(k T)$.

The reader wall recognize that thas amplementation can be used to samulate the homogeneous solution for any dynamic system. A complete simulation would include mother matrix driven by the input plus appropriate summation, etc

An alternate approach using transversal filters for control and simulation makes use of difference equation formulations. The general n-th order lanear tume-invariant difference equation is given by

$$
\begin{gather*}
y(k)=b_{0} u(k)+b_{1} u(k-1)+\cdots+b_{p} u(k-p)-a_{1} y(k-1) \\
-a_{2} y(k-2)-\cdots-a_{n} y(k-n), \quad h=1,2, \cdots \cdot \tag{9}
\end{gather*}
$$

where $y(k)$ is the output at time $t=k T$ and $y(k-1), y(k-2) \cdot$. are the output values at $(h-1) T,(h-2) T$, etc. Similarly, $u(h)$ is the input at $t=k T$ and $u(k-1), u(k-2)$. are the input values at tames $(h-1) T$, ($k-2$) T, and the a_{1} and b_{I} are the system coefficients. This is a recursive equation involving both the input and past values of the output. Incause of the nced for additional on-chip amplifiers, $C C D$ recursive filters may not be as cost effective as transversal filters Thus, the suggested implementation of (9) mahes use of external feedbach paths alound nonrecursive filters, 35 shown in Figure 6.

CCDs appear to offer much promise for real time simulation of large linear time invariant systems, because they an process large quantities of discretc analog data very rapidly. For ime varying and nonlınear cases variable tap woight devices would seem to offer promise structuresrequired for their amplementation would be simalar to those already presented, eacept that the filter in Figure 4 would be used.

Pattern Recognition Applisations

Ihe pathern lecognition system to be considered is shown an Figure 7. The input waveform, $s(t)$, to be adentified as belonging to one of C different clajsos, $w_{h}, k=1,2, \quad, C$, is sampled to form a vector z as

$$
\begin{equation*}
z=\left(z_{1}, z_{2}, \cdot \cdot \cdot z_{n}\right)^{t} \tag{10}
\end{equation*}
$$

and $f(d)$ the Feature Extractor.

The purpose of the Feature Fitractor is to masure significant pioptrizes of the vector z so that the Classifuer can make accurate docisions Thus diplic' 7 dat $\begin{aligned} & \text { deduction Lransformation whach romoves much of the redundant }\end{aligned}$ ninormition whale compressing relevant detall anto as few feature measurenonts is possible. Only linear transformations are beang considered, so the Feature ixtractor can be modeled by

$$
\begin{equation*}
x=A z \tag{11}
\end{equation*}
$$

 is d, l, with $d<n$. For exmple, among the trancrimicions that could be used ne the discrete Foumber and lladmard ir asionm. The foature vector serves as unput to the Classiffer

Inder the assumption that similarity mong, different feature vectors can
be represented by some distance criterion, the function of the Classifier is to partition the feature space such that feature vectors from the dafferent pattern classes ω_{k} lie andistinct hypervolumes and can thus be discrimmated The extent to whach thas may be done determanes the error rate for the system Once again, the discriminant functions which make up the Classifier are constrancd to be Inear, such as

$$
\begin{equation*}
g_{1}(x)=w_{1}^{t} x+w_{10}, 1=1,2, \cdots, c \tag{12}
\end{equation*}
$$

where $w_{i}=\left(w_{1 I}, w_{12}, \cdots, w_{1 d}\right)^{t}$ is the werght vector and w_{10} is the constant arbocided with the $1^{\text {th }}$ class. This stall leaves a large variety of problems for which CCD processors wall be applicable.

To allustrate CCD processor organizations which may be applicable in pattim lurogntion systems, consader the followang hyperthetacal problem [11].

1 Number of sample points, $n=200$
2. Nunber features, $d=20$
3. Number classes, $C=60$

He frature extraction irmsfolmation to be used was given by (11). For convenconce, let $w_{10}=0$ so that the Classifier consiats of the discraminant fuartions

$$
\begin{equation*}
g_{I}(x)=w_{I}^{t} y \quad 1=1,2, \cdots, 60 \tag{13}
\end{equation*}
$$

Falumion to the case $\mathrm{w}_{1} 0^{\frac{1}{7}} 0$ can be dunc casily
One way in whach to implchent (11) and (13) involves a structure in which all ducilmanant functions are evaluated simultaneously, wathout the need for sparac feature, extraction Such a realacation is suggested by a
(wo-dimencion,1] CCD matrix array [12]. First, substitute (11) anto (13) Lo obtarn

$$
\begin{equation*}
g=W A z=Q z \tag{14}
\end{equation*}
$$

where $g=\left(g_{1}(x), g_{2}(x), \cdots, g_{60}(x)\right)^{t}, W=\left(w_{1}^{t}, \cdots, w_{60}^{t}\right)$ and Q is a 60×200 matrax

Figure 8 shows the use of a SI/PO CCD shaft register to obtann samples of the waveform to be classified. The Q matrix corresponds to the analog weighting conductance array, represented by dots in the figure. The $P I / S O$ CCD shift register is used to shift out the discrimanont values to a serial comparator, Which determines the maximum discramanant function and this maines the classifi(ation. If ut as assumed that the CCD registers are operated at 1 MHz, then at Is cotimited that a decision can be made in about 600 us [17].

Another possible system structure is slown in Figure 9 whach utali\&es a srrics-paralled orgamazation anvolving valable tap weight CCD corzelators, load only memories (ROMS) and dagital-to-analog converters (DACs) Again, the Q matrax of (14) is used but now is stored in the ten Q instrin Roms. Conceptually, doh ROM contans sax rows naving 200 data each. First, the sample function to be classified is acquared and ther one row at a time of the ten rome is louded 3 nto the correlators. The operation performed is an aner pioduct of a given fow of the Q matrax with the z vector obtained fiom supling the anput, sance no lage are involved. Ten discramarant values are ohtamed in parajlel, realumbs a lotal of six cycles of operation for the arbitrary number of D.tas shown in the fisure Again, ubing a freauency of 1 MHz for the CCDs and anerpensive (hlow) DACs, a decision wall reauxre about 13 ms [11]
fnejo :1, of course, many variataons of figure 9, for exmple, in which a differont number of dirs are used In idolition, it may bive advantugous in
some r ises to provide separate structures for implenenting the Feature Ixtractor and Classifier, rather than combining them as in (14). The straightforward use of a number of fined tap weight transversal falters, such as in Figure 5, is also likely to be of value in some cases.
] 11ectronics, p. 112, May 11, 1970
2. New Products, Electronzes, April 17, 1975.

3 Altman, L., "Charge-Coupled Devices Nove in on Memories and Analog Signal Processing," Electronics, pp. 91-101, August 8, 1974.

4 hosonocky, W. F., "Charge-Coupled Devices - An Overview," 1974 WESCON Piofessional Program, Session 2, Los Angeles, California, September 1974
5. Butler, W J, et al , "Practical Considerations for Analog Operation of Buchet Bragade," ILDE J Solid State Carcuits, SC-6, DD. 391-395, December 1971.

6 Boyle, W. J. and Smith, G. E., "Charge-Coupled Devices - A New Apoioach to MJS Device Structures," 1EEE Spectrum, pp 18-27, July 1971.

7 Nılshon, N. J., Lealning Machines, McGraw-Hıll: New lork, 1965
8 Rabinor, $L R$, et a]., "The Charp 2 Cransform Algoritha," jleEE Irans on fudio and Flectroacoustrcs, Vol. AU-17, No. 2 , po $56-92$, Jume 1969°
9. Buodresen, R W., et al, "A 500-Point Fourier Transfurm lising Chargecoupled Dovices," Proc. of the Int'I. Solid State Circuits Conf Pebruary 1975.

10 N Vey, E. S. and Parrash, E. A, "The Applucation of Charge-Coupled Device Proctssorg in Automatac Control Systems," submalted to IldE Frans. on Antrimiac. Contiol, 1976

11 Farish, F A and MeVey, E. S , "Implacataons of Charge-Coupled Devaces for Pittein Recogntian," accepted for publacation, lLbE Irans on ©omputers, 1976
 in "malog hignal Procossing Systoms," Final Report, Cuncract No vol014-74-C-0069, hestinghouse Defense and Electionic cystem Center, May 1975

Figure 1	A Swatch-Capacitor Analogy to CCD Operation
Figure 2	Basic CCD Structures (a) SI/SO, (b) SI/PO, (c) PI/So
Tigure 3	A Fined Tap Weaght Transversal Filter
Prgue 4	A Varıable Tap Weight Transversal Filter
Figue 5	A CCD Processor for Implementing (8)
Figure 6	Implementation of a Linear, Time Invariant Difference Equation
「igure 7	A Typical Pattern Recognition System
rigue 8	A Pussible Implementation of (14)
Figure 9	A Series/parallel CCD Structure for Implementing (14)

131

(b)

THE APPLICATION

OF CHARGE-COUPLED DEVICE PROCESSORS

IN AUTOMATIC CONTROL SYSTEMS

E. S. McVey, Sr. Member, IEEE

E. A Parrash, Jr., Member, IFeE

Abstract

The application of CCD (charge-coupled device) processors to atomatic control systems is suggested. CCD processors are a new form of samiconduetor component with the unique ability to process sampled aignals on an milog basis Specific implementations of controllers are suggested for linear time invillant, time varyıng and nonlmear systems. Typical processing time should be only a few microseconds. Thas form of technology may becone competitive with meroplocessors and minicomputers in additaon to supplominting them

THE APPLICATION

OF CHARGE-COUPLED DEVICE PROCESSORS

IN AUTOMATIC CONrROL SYS'CLMS

E. S. IlcVey, Sr Member, IEEE

E A. Parrısh, Jr., Member, Ifee *

Introduction

The development of $C C D$ (charge-coupled devace) processois offors contiol engineris new pussibilities for implementing controllers. Charge-coupted devices are untaue on that they make possible processing of discrote amalog data Fhear discovery was amounced in llay of 1970 by the Bell relephone Iaboratories $[1,2,3]$, and a few cormercial devices are avallable.[4] Although it is not yet practical to use CCDs in production equipment, exrept for applications involving memory and discrete image sensors, it is time to establish a foundation for their use in contiol systems. It is mportant that devace researchers and manufacturers be made aware of the needs of control technology. It is the pulpose here to surgest poosible uncs of CCD procorors, delincate some of the expected problems and suggest possible areas of erploiatzon.

A CCD is a semiconductor component[5] capable of storing quintities of charge called pachets and moving them practacally intact from one storage location to mother the pachets represent the magnitude of signal wimbes If the moverment tohes plice at ragular time mintervals, a discrete dolay line chlon is achueved

The CCD is a mamber of the class called charge transfer devices of which the "buchet brigade devace" (BBD)[6] is also a member The BBD 25 older but of foss potential value for control system signal procesang than the cob.[7] A number of papers are avalable which describe in detail the characteristirs of CCDs, for eample, [8] They consjst essentalally of a substrate of scmuconductor haterial, such as n-type on which is plated a thin layer of ansulation Cells ire then foimed by depositing metal electiodes on the insulating materaal. Buasing the aloctiodes with respect to the substrate creates a potratial well in the semicontutor material. Charge injection is accomplished with a conventional P d juiction Ciarge may be transferred between adjacent colls by applupridtely pulsing the assoctated efectrodes. Although the transfer betwern cells is not perfor, it is idequate for many applacations. The trinsfor anefficiency ε is on the order of 10^{-5} to 10^{-4}. [9] The ε depends on clock ficquency, as one would pect Present operation of these devaces is usually rastrirted to less thin 10 NHz . Trinsfer efficiency is important to anilog data processing, because sagnal levols camot be reestablished as in digital processing. The the ral generation of electron-hole palis is a serious gomute of distortion, wifecilly at elevaled temperatures. this restracts storige in
…… Both with the sthool of Lnginerring and Applied Science, unverbity of Viggata, Charlottoville, Virgmia the research on whach this paper is lat ed th is sunported by the iisA I mgley Research Center on Grant No isG-1067 and Gint Vo. 1151.
a cell at room temperature to times less than one second. Storage time can be increased approximately by a factor of two for every $10^{\circ} \mathrm{C}$ decrease in temperature.

This technology has led to the development of discrete element sensurs and TV cameras that are now avalable commercially.[10] It is antictpated that memories of very high densities will be developed. Small memories are now dvallable commercially. Discrete analog CCD processors are not yet wudely avaılable, but famlies are expected to emerge soon.

Digital computers, especially small ones, are becoming widely used for control purposes. This seems to be a logacal application also for CCD hardware Different implementation possibilities are suggested in the following. Lt is emphasized that these adeas have not been proven evperamentally, ho mae it is not yet possible to obtain the devices However, they are jogical ixilapolations based on successful mperiments and on antirapated device developments

Fundamental Configurations

Seleral CCD stuctures are under development whach are considered bistc building blocks. By using these devices wath some additional circuitiy, it is possible to implement linear tramsformations such as convolition, coriflution and Fourder transfoims.

The three basic building blocks are Sersal $\mathrm{In} /$ Senill Out (hi/50) Registers, Serial In/Parillel Out (SI/PO) Regasters md Pirallel In/iciril Out (Pl/SO) Regasters.[11] of those, the SL/SO is the samplest, comeinting of a linear array of CCD colls Dependang upon the munter of colls and the dork
 fikmor es.

The SI/PO block has mondestrutave taps dong the delay lane. By moviding welghts on these tias and using curient suming, a device such a, , hown in Fig 1 as obtained. If the tap weights ate made equal to the componcots of a voctor $h=\left(h_{1}, h_{2}, . \quad, h_{d}\right) t$ and a vector $u=\left(u_{1}, u_{2}, . \quad, \quad u_{d}\right){ }_{\text {is }}$ loided into the shift registor, then the calcuit will compute the mar piodut

$$
\begin{equation*}
y=h \cdot u \tag{1}
\end{equation*}
$$

Matched fulteang can also be accomplished by setting the tap waghts equal to samples of the time inverse of the signal to be detcoted At the $n^{\text {th }}$ cluck time the output is then the worghted sum of the pievious numper

$$
\begin{equation*}
y(n)=\sum_{I=0}^{p} h_{z} u_{n-1}, n \geq p \tag{2}
\end{equation*}
$$

The fared tap weight structure in 「ag. 1 is only a little moie complawated than the babic SI/PO bualdang block. Because of thas and the fart that it unpletants a irmsersal or nonrecuisive fulter, it too is likely to become a bisic buildang block in the near future. [12]

Some work has been done on atructures samiar to that in fig 1 in which the tap worghts are variable [13, l^{\prime}] this would allow convolut im or amolat

varable tap weight transversal filters has been somewhat limited compared to those $3 n$ which the tap weights are fixed and represent a considerable challenge [15] Because of thear sigmificant potential in control systems, structures will be suggested to demonstrate the need for continuing the development of these devices.

The PI/SO block is, of course, samilar to the SI/PO block, except for inter-changing the input and output The register is loaded by synchronously sampling all of its inputs. Chis configuration is shown in later figures.

At thas point it may be well to note the conditions under whach CCD processors might become practical for use in control systems. Classzcally, the control engincer would implement a transfer function wath passive components and an amplifier. One condition that would make the CCD system pieferable to the classical approach for a linear time znvariant system will exist when the fixed tap weight tramsversal filter of Fig. 1 costs less than the controllers presently being used Dther conditions include the potential for iequiring less space, power, volume and increased reliability. Timing functions not shown in the diagiam increase the costs of the CCD controller. A bisger payoff is avazible in more complacated systoms which requare parameter changes not wist ly implemented with classical methods. In this case, the (CD controller competes wath a form of computer.

Control Systems r amples

Linear Trme Tivarant Systems
there die siveral anproaches for modeling automatic contiol synteme which are sulable for CCD implementation. Tn the following, discrete convolution ind diffucme equation models will be considured, although st ate upur models (am be used, also

As a plactucal axampe, the followng waightang function (mant, minn-
 rate mput, it as given by

$$
\begin{align*}
h(t)= & 0.45 t e^{-0.62 t}+0.52 e^{-0.62 t}-535 e^{-5.0 t} \\
& +e^{-4.2 t}(48 \cos 4.3 t+69 \sin 4.3 t) \tag{3}
\end{align*}
$$

The output $y(t)$ may be expresced as

$$
\begin{equation*}
y(t)=\int_{0}^{t} h(t) u(t-r) d \tau \quad . \tag{4}
\end{equation*}
$$

whilch has the discrete form given in (2) For this case, the values of h to use in Fig 1 for $d=200$ can be obtaned from (3) over a lo-second time interval. It would be practical 10 use even more values of h. For esample, a boopoint CCD Fourael it a form procrssor is buing developed [16], and a boo-pount CCD power densaly spectrum andlyepr has bew tested. [17]

A typacal optration cycle of the CCD processor might be 6 micioneconds (ie, a new value of $y(n)$ is dutilible every $r=6$ microseconds) where L

 odder hold devur fhis is much fister tha could be obtamed with am orlinay dagital computer.

An alternative \quad iy to ralace thas controller would be to diatidide the
transfer function using Tustin's approximation, for evample, and then convert to a difference equation formulation. In general, the result would be a recursive dafference equation involving both the input and past values of the output. A recursive implementation is proposed in Fig. 2. It has bern suggested[12] that CCD recursive filters may not be as cost effective as transversal filters because of the need for addational amplifiers on the chaps Consequently, the following example makes use of external feedback paths around nonrecursive fillers.

The general $n^{\text {th }}$ order Inear time-invariant difference equation is given by

$$
\begin{gather*}
y(h)=b_{0} u(k)+b_{1} u(k-1)+\ldots+b_{p u}(k-p)-a_{1} y(k-1)-a_{2}(k-?) \tag{6}\\
-\ldots \quad-a_{n} y(k-n), k=1,2, \quad .
\end{gather*}
$$

where $y(h)$ is the output, at time $t=k T$ and $y(k-1), y(k-2)$ the output values pieviously stored in the top shift register of fig. 2. Similarly, $u(h)$ is the mput at $t=k T$ and $u(h-1), u(h-2)$, aie the mput values pieviously stored in the bottom shaft legister, and the coefficunts a_{1} and b_{1} are the tap weights shown. Neglecting initial conditions, operition is begun by clearing both registers. Thereafter, values of $y(h r)$ wre gram ind it each clock tame

In anticipated sapling interval for a sybtem fike this might be on the order of 10 macroseconds whese 6 microseconds are requated for one cyc lo of optration of the two tamsversal filters and 4 micruseconds are wequand fur the final summation that provides $y(k T)$ Such a small interval in mont eyot, me would mahe it difficult to detect any difference from a conthousus if it is moportint to note that the mimum samplang rate is mdependent of the ordor of the quation, which is opposite the case where digital computers are ured

It seems re somable to assume that the CCD mplementation will be cost effective in the near future only for controllers of high onder. In wis where filtering (e.g, Kalman faliering) is part of the controller, the ouder of the system whil determine the equation order to be mplemontod With (CD mplementation it would appear that there is no need to obtann low ondor representations.

Systems In whicli Parameters Vary
In nonlinear systems or time varying systoms, it as necossary to vary the tap weights as indicated by Fig. 3 Since the CCD controllei cyrle time is so much smaller than the lesponse time of typacal control syotims, it wims reasonable to treat parmeter varying problems as slowly vayang linear sy, ems. Thus, a microcomputer or other computer would calculate the tap werghts at a relatively slow rate for the CCD controller.

Conclusions

the possibulity of applying CCD technology to system controllers and fillers has been suggested. Thas techmology would sem to be most mplutho to large systems or to applatations requiting faster operation than dioltal computers can provide Althongh the components iequired to dmolcment the strutures shown are not readily avalable dt this time, it is antirinitid that they snon wall be.

Biblıography

1. Electronics, p. 112, May 11, 1970.
2. Boyle, W. J. and Smith, G. E., "Charge-Coupled Semiconductor Devices," Bell Syst. Tech J., Vol. 49, pp. 487-493, 1970.
3. Amılio, G. F , et al., "Experimental Verification of the Charge-Coupled Concept," Bell Syst. Tech. J., Vol. 49, p. 593, 1970.
4. Altman, L., "Charge-Coupled Devices Muve in on Memories and Analog Signal Processing," Electronacs, pp. 91-101, August 8, 1974.
5. Kosonochy, W. F., "Charge-Coupled Devaces - An Overview," 1974 WISCON Professional Program, Session 2, Los Angeles, Calafornia, Septeniber 1974.
6. Butler, W J., et al., "Plactical Considerations for Analog Operation of Buchet Bragade," IEre J Solid State Circults, SC-6, pp. 391-395, Decouber 1971
7. Buss, D. D., et al., "Charge Transfer Device Transversal Pilters for Communication Systems," submitted to TEDE rians. on Comm
8. Boyle, W. J. and Smith, G E., "Charge-Coupled Devices-A New Approach to MIS Device Structures," 1EEE Spectrum, pp. 18-27, July 1971.
9. Whate, M. H. and Webb, W R , "Study of the Use of Charge-Coupled Devices in Analog Signal Processing Systems," Final Report, Contract No. V00014-74-C-0069, Westinghouse Defense and Electronjc System Center, May 1974.
10. New Products, Electronncs, April 17, 1975

11 Jampe, $D R$, et al, "CCD's for Discrete Analog Sagnal Procossing (DASP), IEEE Intercon, March 1974, New York.
12. Buss, D D., Bailey, W. H., Tasch. A. F., Ir., "Signal Processing Applications of Charge-Coupled Devices," Proc. Intl. Conf. on the Technology and Applications of CCD's, Edubuigh, Suptinber 25-27, 1974.
13. White, M. H., et al., "CCD NOS Devices for Progrumable Analog Si,nal Processing and Digital Memory," 1973 Intl. Clcctron Devicers Meetins, Ferh. DIg., p. $130-133$.
14. Tiemann, J. J, et al., "Intracell Charge-Transfer Structures for Signal Processing," IEEE Trans. Elec. Dev., ED-21, pp. 300-308, May 1974
15. Hartmen, C S., et al., "Programable Transversal Filters Uang Sulface Wave Devices, Charge Transfer Devuces, and Conventional Digital Approaches," Proc. Intl. Spec Seminar on "Component Performance and Systems Applications of Acoustic Surface Wave Devices, Aviemore, Scotland, Pp 102-114, September 1973.
16 Benz, H F., private communications, NASA, Langley, Va., May 1975
17. Brodelsen, R. W., et al., "A 500-Point Fourier Fransform Using ChargeCoupled Devices," Proc. of the Intl. Solid State Circuits Conf., Februry 1975.

Lust of Captions

Fig. 1 Lunear Fired Parameter System Using Discrete Convolution Fig 2 Implementation of a Recursive Difference Equation
Fig 3 Linear Time Varıable Parameter System Using Dascrete Convolution with Variable Tap Weights

ORIGINALI PAGE IS OE POOR QUALITY

DISTRIBUTION LIST

```
Copy Ho.
    1-2 NASA Scientific & Technical Information Facılity
        P. O. Box }875
        Baltmmore/Washington International A_rport
        Maryland 21240
    3-5 National Aeronautics and Space Administration
        Langley Research Center
        Hampton, Virginıa 23665
        Attn: Mr. Charles Husson
        NASA Technical Officer
    6-7 E. A. Parrısh
    8-9 E. S. McVey
    10 J.N. Warfield
    11 I. A. Fischer
        Office of Sponsored Programs
12-13 E. H. Pancake
    ScI/Tech Information Center
    Clark Hall
    14 RLES Files
```


UNIVERSITY OF VIRGINIA

School of Engineering and Applied Science

The University of Virginia's School of Engineering and Applied Science has an undergraduate enrollment of approximately 1,000 students with a graduate enrollment of 350 There are approximately 120 faculty members, a majority of whom conduct research in addition to teaching

Research is an integral part of the educational program and interests parallel academic specialties These range from the classical engineering departments of Chemical, Civil, Electrical, and Mechanical to departments of Bımedical Engıneerıng, Engıneerıng Scıence and Systems, Materıals Science, Nuclear Engıneerıng, and Applıed Mathematics and Computer Science In addition to these departments, there are interdepartmental groups in the areas of Automatic Controls and Applıed Mechanics All departments offer the doctorate, the Biomedical and Materıals Science Departments grant only graduate degrees

The School of Engineering and Applied Science is an integral part of the University (approximately 1,400 full-time faculty with a total enrollment of about 14,000 full-tıme students), which also has professional schools of Architecture, Law, Medicıne, Commerce, and Business Admınıstration In addition, the College of Arts and Sciences houses departments of Mathematics, Physics, Chemistry and others relevant to the engineering research program This University community provides opportunities for interdisciplinary work in pursuit of the basic goals of education, research, and public service

