685 research outputs found
Lyman-alpha Damping Wing Constraints on Inhomogeneous Reionization
One well-known way to constrain the hydrogen neutral fraction, x_H, of the
high-redshift intergalactic medium (IGM) is through the shape of the red
damping wing of the Lya absorption line. We examine this method's effectiveness
in light of recent models showing that the IGM neutral fraction is highly
inhomogeneous on large scales during reionization. Using both analytic models
and "semi-numeric" simulations, we show that the "picket-fence" absorption
typical in reionization models introduces both scatter and a systematic bias to
the measurement of x_H. In particular, we show that simple fits to the damping
wing tend to overestimate the true neutral fraction in a partially ionized
universe, with a fractional error of ~ 30% near the middle of reionization.
This bias is generic to any inhomogeneous model. However, the bias is reduced
and can even underestimate x_H if the observational sample only probes a subset
of the entire halo population, such as quasars with large HII regions. We also
find that the damping wing absorption profile is generally steeper than one
would naively expect in a homogeneously ionized universe. The profile steepens
and the sightline-to-sightline scatter increases as reionization progresses. Of
course, the bias and scatter also depend on x_H and so can, at least in
principle, be used to constrain it. Damping wing constraints must therefore be
interpreted by comparison to theoretical models of inhomogeneous reionization.Comment: 11 pages, 10 figures; submitted to MNRA
Foreground Model and Antenna Calibration Errors in the Measurement of the Sky-Averaged \lambda 21 cm Signal at z~20
The most promising near-term observable of the cosmic dark age prior to
widespread reionization (z~15-200) is the sky-averaged \lambda 21 cm background
arising from hydrogen in the intergalactic medium. Though an individual antenna
could in principle detect the line signature, data analysis must separate
foregrounds that are orders of magnitude brighter than the \lambda 21 cm
background (but that are anticipated to vary monotonically and gradually with
frequency). Using more physically motivated models for foregrounds than in
previous studies, we show that the intrinsic "spectral smoothness" of the
foregrounds is likely not a concern, and that data analysis for an ideal
antenna should be able to detect the \lambda 21 cm signal after deprojecting a
~5th order polynomial in log(\nu). However, we find that the foreground signal
is corrupted by the frequency-dependent response of a real antenna. The
frequency dependence complicates modeling of foregrounds commonly based on the
assumption of spectral smoothness. Much of our study focuses on the
Large-aperture Experiment to detect the Dark Age (LEDA), which combines both
radiometric and interferometric measurements. We show that statistical
uncertainty remaining after fitting antenna gain patterns to interferometric
measurements does not compromise extraction of the \lambda 21 cm signal for a
range of cosmological models after fitting a 7th order polynomial to
radiometric data. Our results generalize to most efforts to measure the
sky-averaged spectrum.Comment: 12 pages, 12 figures, accepted for publication in ApJ. Accepted
version uploade
Exploring the Implications of Monetary Policy Normalisation for Irish Mortgage Arrears. Quarterly Economic Commentary Special Article, Spring 2019.
The current level of the monetary policy rate in the Eurozone is low both by international and historical standards and will likely rise over the coming years. In this Article we consider what the impact of a rise in ECB policy rates would mean for the Irish mortgage market. First, we examine the structure of the Irish mortgage market in terms of interest rate contract types and explore the link between the mortgage rate and the policy rate. Second, we draw out the results of policy modelling linking arrears and interest rates using a model put forward in Slaymaker et al. (2019). We then use this model to provide some further scenarios exploring the impact of interest rate rises on the arrears rate for particular groups of Irish households. Our findings suggest a 25 basis point increase in the policy rate would lead to a 0.1 percentage point increase in new missed mortgage payments. While households are in a better economic position to withstand policy rate increases given the recovery in the labour market and in house prices, rate rises would lead to payments rising faster than long-term income growth. Younger, lower income households who are at an earlier stage in their mortgage contract are more at risk, as are households on tracker interest rates who have a contractual pass-through from the policy rate to the lending rate
Observational Constraints on the Molecular Gas Content in Nearby Starburst Dwarf Galaxies
Using star formation histories derived from optically resolved stellar
populations in nineteen nearby starburst dwarf galaxies observed with the
Hubble Space Telescope, we measure the stellar mass surface densities of stars
newly formed in the bursts. By assuming a star formation efficiency (SFE), we
then calculate the inferred gas surface densities present at the onset of the
starbursts. Assuming a SFE of 1%, as is often assumed in normal star-forming
galaxies, and assuming that the gas was purely atomic, translates to very high
HI surface densities (~10^2-10^3 Msun pc^-2), which are much higher than have
been observed in dwarf galaxies. This implies either higher values of SFE in
these dwarf starburst galaxies or the presence of significant amounts of H_2 in
dwarfs (or both). Raising the assumed SFEs to 10% or greater (in line with
observations of more massive starbursts associated with merging galaxies),
still results in HI surface densities higher than observed in 10 galaxies.
Thus, these observations appear to require that a significant fraction of the
gas in these dwarf starbursts galaxies was in the molecular form at the onset
of the bursts. Our results imply molecular gas column densities in the range
10^19-10^21 cm^-2 for the sample. In those galaxies where CO observations have
been made, these densities correspond to values of the CO-H_2 conversion factor
(X_CO) in the range >3-80x10^20 cm^-2 (K km s^-1)^-1, or up to 40x greater than
Galactic X_CO values.Comment: 8 pages, 4 figures, 2 table
The ACS Nearby Galaxy Survey Treasury VII. The NGC 4214 Starburst and the Effects of Star Formation History on Dwarf Morphology
We present deep Hubble Space Telescope Wide Field Planetary Camera 2 (WFPC2)
optical observations obtained as part of the ACS Nearby Galaxy Survey Treasury
(ANGST) as well as early release Wide Field Camera 3 (WFC3) ultra-violet and
infrared observations of the nearby dwarf starbursting galaxy NGC 4214. Our
data provide a detailed example of how covering such a broad range in
wavelength provides a powerful tool for constraining the physical properties of
stellar populations. The deepest data reach the ancient red clump at M_F814W
-0.2. All of the optical data reach the main sequence turnoff for stars younger
than ~300 Myr, and the blue He burning sequence for stars younger than 500 Myr.
The full CMD-fitting analysis shows that all three fields in our data set are
consistent with ~75% of the stellar mass being older than 8 Gyr, in spite of
showing a wide range in star formation rates at the present day. Thus, our
results suggest that the scale length of NGC 4214 has remained relatively
constant for many Gyr. As previously noted by others, we also find the galaxy
has recently ramped up production, consistent with its bright UV luminosity and
its population of UV-bright massive stars. In the central field we find UV
point sources with F336W magnitudes as bright as -9.9. These are as bright as
stars with masses of at least 52-56 M_sun and ages near 4 Myr in stellar
evolution models. Assuming a standard IMF, our CMD is well-fitted by an
increase in star formation rate beginning 100 Myr ago. The stellar populations
of this late-type dwarf are compared with those of NGC 404, an early-type dwarf
that is also the most massive galaxy in its local environment. The late-type
dwarf appears to have a similar high fraction of ancient stars, suggesting that
these dominant galaxies may form at early epochs even if they have low total
mass and very different present-day morphologies.Comment: 17 pages, 10 figures, accepted for publication in Ap
- …