187 research outputs found

    Recombinant production of the therapeutic peptide lunasin

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Lunasin is a chemopreventive peptide produced in a number of plant species. It comprises a helical region with homology to a region of chromatin binding proteins, an Arg-Gly-Asp cell adhesion motif and eight aspartic acid residues. <it>In vitro </it>studies indicate that lunasin suppresses chemical and oncogene driven transformation of mammalian cells. We have explored efficient recombinant production of lunasin by exploiting the <it>Clostridium thermocellum </it>CipB cellulose binding domain (CBD) as a fusion partner protein.</p> <p>Results</p> <p>We used a pET28 vector to express a CBD-lunasin fusion with a hexahistidine tag and Tobacco Etch Virus protease site, to allow protease-mediated release of native lunasin. Autoinduction in <it>E. coli </it>BL21 (DE3) Star cells achieved expression of 3.35 g/L of CBD-lunasin fusion protein. The final yield of lunasin was 210 mg/L corresponding to 32% of the theoretical yield. Purification by cellulose binding and nickel affinity chromatography were tested with the latter proving more satisfactory.</p> <p>The effects of CBD-lunasin expression on growth and morphology of the <it>E. coli </it>cells were examined by light and electron microscopy revealing an altered morphology in a proportion of cells. Cell division appeared to be inhibited in these cells resulting in elongated, non-septated cells.</p> <p>Conclusions</p> <p>The use of CBD as a fusion partner gave high protein yields by autoinduction, with lunasin release by TEV protease cleavage. With some optimisation this approach could provide a potentially valuable route for production of this therapeutic peptide. Over-expression in the host cells manifest as a cell division defect in a population of the cells, presumably mimicking some aspect of the chemopreventive function observed in mammalian cells.</p

    Regional perturbation of gene transcription is associated with intrachromosomal rearrangements and gene fusion transcripts in high grade ovarian cancer.

    Get PDF
    Genomic rearrangements are a hallmark of cancer biology and progression, allowing cells to rapidly transform through alterations in regulatory structures, changes in expression patterns, reprogramming of signaling pathways, and creation of novel transcripts via gene fusion events. Though functional gene fusions encoding oncogenic proteins are the most dramatic outcomes of genomic rearrangements, we investigated the relationship between rearrangements evidenced by fusion transcripts and local expression changes in cancer using transcriptome data alone. 9,953 gene fusion predictions from 418 primary serious ovarian cancer tumors were analyzed, identifying depletions of gene fusion breakpoints within coding regions of fused genes as well as an N-terminal enrichment of breakpoints within fused genes. We identified 48 genes with significant fusion-associated upregulation and furthermore demonstrate that significant regional overexpression of intact genes in patient transcriptomes occurs within 1 megabase of 78 novel gene fusions that function as central markers of these regions. We reveal that cancer transcriptomes select for gene fusions that preserve protein and protein domain coding potential. The association of gene fusion transcripts with neighboring gene overexpression supports rearrangements as mechanism through which cancer cells remodel their transcriptomes and identifies a new way to utilize gene fusions as indicators of regional expression changes in diseased cells with only transcriptomic data

    Computer vision and machine learning for medical image analysis: recent advances, challenges, and way forward.

    Get PDF
    The recent development in the areas of deep learning and deep convolutional neural networks has significantly progressed and advanced the field of computer vision (CV) and image analysis and understanding. Complex tasks such as classifying and segmenting medical images and localising and recognising objects of interest have become much less challenging. This progress has the potential of accelerating research and deployment of multitudes of medical applications that utilise CV. However, in reality, there are limited practical examples being physically deployed into front-line health facilities. In this paper, we examine the current state of the art in CV as applied to the medical domain. We discuss the main challenges in CV and intelligent data-driven medical applications and suggest future directions to accelerate research, development, and deployment of CV applications in health practices. First, we critically review existing literature in the CV domain that addresses complex vision tasks, including: medical image classification; shape and object recognition from images; and medical segmentation. Second, we present an in-depth discussion of the various challenges that are considered barriers to accelerating research, development, and deployment of intelligent CV methods in real-life medical applications and hospitals. Finally, we conclude by discussing future directions

    Cadenas Globales de Valor: análisis de la participación y posición de países desarrollados dentro de las cadenas globales de valor, con especial interés para el caso de Estados Unidos

    Get PDF
    Este trabajo describe el desarrollo de las cadenas globales de valor desde sus inicios y muestra una metodología que permite obtener indicadores de participación y posición de los países dentro de las mismas. Se realiza un análisis general por regiones mundiales y posteriormente el análisis se centra en el caso de Estados Unidos. Se trata de un país que muestra una gran participación dentro de las cadenas globales de valor, aunque cada vez menor debido al ascenso de China dentro de la escena mundial. En cuanto a la posición, la posición de Estados Unidos es más bien alejada del producto final, ya que al ser un país con abundantes recursos naturales exporta una gran cantidad de materia que es usada por otros países en fases posteriores de las cadenas globales de valor. Adicionalmente, se observan cambios de tendencias en la posición de China dentro de las cadenas globales de valor, que pasa a posiciones más alejadas del producto final como consecuencia de su crecimiento económico, que le permite especializarse en tareas menos finalistas y más adecuadas a la creciente proporción de capital humano cualificado del que dispone. Esto confirma que el modelo Heckscher-Ohlin es válido y que el cambio de China hacia una abundancia relativa creciente de capital humano cualificado la hace posicionarse en otro punto de las cadenas globales de valor.<br /

    Recombinant production of self-assembling β-structured peptides using SUMO as a fusion partner.

    Get PDF
    BACKGROUND: Self-assembling peptides that form nanostructured hydrogels are important biomaterials for tissue engineering scaffolds. The P₁₁-family of peptides includes, P₁₁-4 (QQRFEWEFEQQ) and the complementary peptides P₁₁-13 (EQEFEWEFEQE) and P₁₁-14 (QQOrnFOrnWOrnFOrnQQ). These form self-supporting hydrogels under physiological conditions (pH 7.4, 140 mM NaCl) either alone (P₁₁-4) or when mixed (P₁₁-13 and P₁₁-14). We report a SUMO-peptide expression strategy suitable for allowing release of native sequence peptide by SUMO protease cleavage. RESULTS: We have expressed SUMO-peptide fusion proteins from pET vectors by using autoinduction methods. Immobilised metal affinity chromatography was used to purify the fusion protein, followed by SUMO protease cleavage in water to release the peptides, which were recovered by reverse phase HPLC. The peptide samples were analysed by electrospray mass spectrometry and self-assembly was followed by circular dichroism and transmission electron microscopy. CONCLUSIONS: The fusion proteins were produced in high yields and the β-structured peptides were efficiently released by SUMO protease resulting in peptides with no additional amino acid residues and with recoveries of 46% to 99%. The peptides behaved essentially the same as chemically synthesised and previously characterised recombinant peptides in self-assembly and biophysical assays

    Options for state chemicals policy reform:A resource guide

    Get PDF

    Generation of specific inhibitors of SUMO-1– and SUMO-2/3–mediated protein-protein interactions using Affimer (Adhiron) technology

    Get PDF
    Because protein-protein interactions underpin most biological processes, developing tools that target them to understand their function or to inform the development of therapeutics is an important task. SUMOylation is the posttranslational covalent attachment of proteins in the SUMO family (SUMO-1, SUMO-2, or SUMO-3), and it regulates numerous cellular pathways. SUMOylated proteins are recognized by proteins with SUMO-interaction motifs (SIMs) that facilitate noncovalent interactions with SUMO. We describe the use of the Affimer system of peptide display for the rapid isolation of synthetic binding proteins that inhibit SUMO-dependent protein-protein interactions mediated by SIMs both in vitro and in cells. Crucially, these synthetic proteins did not prevent SUMO conjugation either in vitro or in cell-based systems, enabling the specific analysis of SUMO-mediated protein-protein interactions. Furthermore, through structural analysis and molecular modeling, we explored the molecular mechanisms that may underlie their specificity in interfering with either SUMO-1–mediated interactions or interactions mediated by either SUMO-2 or SUMO-3. Not only will these reagents enable investigation of the biological roles of SUMOylation, but the Affimer technology used to generate these synthetic binding proteins could also be exploited to design or validate reagents or therapeutics that target other protein-protein interactions

    A review of the opportunities and challenges for using remote sensing for management of surface-canopy forming kelps

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Cavanaugh, K. C., Bell, T., Costa, M., Eddy, N. E., Gendall, L., Gleason, M. G., Hessing-Lewis, M., Martone, R., McPherson, M., Pontier, O., Reshitnyk, L., Beas-Luna, R., Carr, M., Caselle, J. E., Cavanaugh, K. C., Miller, R. F., Hamilton, S., Heady, W. N., Hirsh, H. K., Hohman R., Lee L. C., Lorda J., Ray J., Reed D. C., Saccomanno V. R., Schroeder, S. B. A review of the opportunities and challenges for using remote sensing for management of surface-canopy forming kelps. Frontiers in Marine Science, 8, (2021): 753531, https://doi.org/10.3389/fmars.2021.753531.Surface-canopy forming kelps provide the foundation for ecosystems that are ecologically, culturally, and economically important. However, these kelp forests are naturally dynamic systems that are also threatened by a range of global and local pressures. As a result, there is a need for tools that enable managers to reliably track changes in their distribution, abundance, and health in a timely manner. Remote sensing data availability has increased dramatically in recent years and this data represents a valuable tool for monitoring surface-canopy forming kelps. However, the choice of remote sensing data and analytic approach must be properly matched to management objectives and tailored to the physical and biological characteristics of the region of interest. This review identifies remote sensing datasets and analyses best suited to address different management needs and environmental settings using case studies from the west coast of North America. We highlight the importance of integrating different datasets and approaches to facilitate comparisons across regions and promote coordination of management strategies.Funding was provided by the Nature Conservancy (Grant No. 02042019-5719), the U.S. National Science Foundation (Grant No. OCE 1831937), and the U.S. Department of Energy ARPA-E (Grant No. DE-AR0000922)
    corecore