46 research outputs found

    A randomised controlled trial investigating motor skill training as a function of attentional focus in old age

    Get PDF
    BACKGROUND: Motor learning research has had little impact on clinical applications and rarely extended to research about how older adults learn motor skills. There is consistent evidence that motor skill performance and learning can be enhanced by giving learners instructions that direct their attention. The aim of this study was to test whether elderly individuals that receive an external focus instruction during training of dynamic balance skills would learn in a different manner compared to individuals that received an internal focus instruction. METHODS: This randomised trial included 26 older persons (81 +/- 6 years) that were training functional balance twice a week for the duration of 5 weeks. Learning outcomes were recorded after every training session. Weight shifting score and dynamic balance parameters (Biodex Balance System), components of the Extended Timed-Get-Up-and-Go test, five chair rises, and falls efficacy (FES-I) was assessed at baseline and post-intervention. RESULTS: Participation for training sessions was 94%. No differences between groups were found following 5 weeks of training for weight shifting score, dynamic balance index and dynamic balance time (p < 0.95, p = 0.16, p < 0.50), implying no learning differences between training groups. Extended Timed-Get-Up-and-Go components Sit-to-stand, p = .036; Gait initiation, p = .039; Slow down, stop, turnaround, and sit down, p = 0.011 and the Fes-I (p = 0.014) showed improvements for the total group, indicating that function improved compared to baseline. CONCLUSION: A 5-week balance training improved weight shifting scores and dynamic balance parameters as well as functional abilities. The observed improvements were independent from the type of attentional focus instructions. The findings provide support for the proposition of different motor learning principles in older adults compared to younger adults

    Children with cerebral palsy exhibit greater and more regular postural sway than typically developing children

    Get PDF
    Following recent advances in the analysis of centre-of-pressure (COP) recordings, we examined the structure of COP trajectories in ten children (nine in the analyses) with cerebral palsy (CP) and nine typically developing (TD) children while standing quietly with eyes open (EO) and eyes closed (EC) and with concurrent visual COP feedback (FB). In particular, we quantified COP trajectories in terms of both the amount and regularity of sway. We hypothesised that: (1) compared to TD children, CP children exhibit a greater amount of sway and more regular sway and (2) concurrent visual feedback (creating an external functional context for postural control, inducing a more external focus of attention) decreases both the amount of sway and sway regularity in TD and CP children alike, while closing the eyes has opposite effects. The data were largely in agreement with both hypotheses. Compared to TD children, the amount of sway tended to be larger in CP children, while sway was more regular. Furthermore, the presence of concurrent visual feedback resulted in less regular sway compared to the EO and EC conditions. This effect was less pronounced in the CP group where posturograms were most regular in the EO condition rather than in the EC condition, as in the control group. Nonetheless, we concluded that CP children might benefit from therapies involving postural tasks with an external functional context for postural control

    Feasibility of neuromuscular training in patients with severe hip or knee OA: The individualized goal-based NEMEX-TJR training program

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although improvements are achieved by general exercise, training to improve sensorimotor control may be needed for people with osteoarthritis (OA). The aim was to apply the principles of neuromuscular training, which have been successfully used in younger and middle-aged patients with knee injuries, to older patients with severe hip or knee OA. We hypothesized that the training program was feasible, determined as: 1) at most acceptable self-reported pain following training; 2) decreased or unchanged pain during the training period; 3) few joint specific adverse events related to training, and 4) achieved progression of training level during the training period.</p> <p>Methods</p> <p>Seventy-six patients, between 60 and 77 years, with severe hip (n = 38, 55% women) or knee OA (n = 38, 61% women) underwent an individualized, goal-based neuromuscular training program (NEMEX-TJR) in groups for a median of 11 weeks (quartiles 7 to 15) prior to total joint replacement (TJR). Pain was self-reported immediately after each training session on a 0 to 10 cm, no pain to pain as bad as it could be, scale, where 0-2 indicates safe, > 2 to 5 acceptable and > 5 high risk pain. Joint specific adverse events were: not attending or ceasing training because of increased pain/problems in the index joint related to training, and self-reported pain > 5 after training. The level of difficulty of training was registered.</p> <p>Results</p> <p>Patients with severe OA of the hip or knee reported safe pain (median 2 cm) after training. Self-reported pain was lower at training sessions 10 and 20 (p = 0.04) and unchanged at training sessions 5 and 15 (p = 0.170, p = 0.161) compared with training session 1. There were no joint specific adverse events in terms of not attending or ceasing training. Few patients (n = 17, 22%) reported adverse events in terms of self-reported pain > 5 after one or more training sessions. Progression of training level was achieved over time (p < 0.001).</p> <p>Conclusions</p> <p>The NEMEX-TJR training program is feasible in patients with severe hip or knee OA, in terms of safe self-reported pain following training, decreased or unchanged pain during the training period, few joint specific adverse events, and achieved progression of training level during the training period.</p

    Observing human interaction with physical devices

    Get PDF
    Previous study has shown that if we observe another person operating a tool or physical device, then the action rule of the observed action is automatically activated and can subsequently facilitate own actions. In this study, the mechanisms responsible for this automatic priming of actions are investigated. In two experiments, the question is raised whether priming arises from the observation of the physical device and its movements, or whether it is modulated by aspects of the person’s behaviour. Whereas experiment 1 shows that priming effects are not influenced by the effector used by the observed person, experiment 2 demonstrates that they are modulated by the handle (and associated action rule) that is used to operate the device. These results suggest that motor resonance mechanisms are sensitive to the specific interaction between movements of an actor and associated movements of a physical device

    Reciprocal Modulation of Cognitive and Emotional Aspects in Pianistic Performances

    Get PDF
    Background: High level piano performance requires complex integration of perceptual, motor, cognitive and emotive skills. Observations in psychology and neuroscience studies have suggested reciprocal inhibitory modulation of the cognition by emotion and emotion by cognition. However, it is still unclear how cognitive states may influence the pianistic performance. The aim of the present study is to verify the influence of cognitive and affective attention in the piano performances. Methods and Findings: Nine pianists were instructed to play the same piece of music, firstly focusing only on cognitive aspects of musical structure (cognitive performances), and secondly, paying attention solely on affective aspects (affective performances). Audio files from pianistic performances were examined using a computational model that retrieves nine specific musical features (descriptors) - loudness, articulation, brightness, harmonic complexity, event detection, key clarity, mode detection, pulse clarity and repetition. In addition, the number of volunteers' errors in the recording sessions was counted. Comments from pianists about their thoughts during performances were also evaluated. The analyses of audio files throughout musical descriptors indicated that the affective performances have more: agogics, legatos, pianos phrasing, and less perception of event density when compared to the cognitive ones. Error analysis demonstrated that volunteers misplayed more left hand notes in the cognitive performances than in the affective ones. Volunteers also played more wrong notes in affective than in cognitive performances. These results correspond to the volunteers' comments that in the affective performances, the cognitive aspects of piano execution are inhibited, whereas in the cognitive performances, the expressiveness is inhibited. Conclusions: Therefore, the present results indicate that attention to the emotional aspects of performance enhances expressiveness, but constrains cognitive and motor skills in the piano execution. In contrast, attention to the cognitive aspects may constrain the expressivity and automatism of piano performances.Brazilian government research agency: Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)[08/54844-7]Brazilian government research agency: Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)[07/59826-4

    ACL injury prevention, more effective with a different way of motor learning?

    Get PDF
    What happens to the transference of learning proper jump-landing technique in isolation when an individual is expected to perform at a competitive level yet tries to maintain proper jump-landing technique? This is the key question for researchers, physical therapists, athletic trainers and coaches involved in ACL injury prevention in athletes. The need for ACL injury prevention is clear, however, in spite of these ongoing initiatives and reported early successes, ACL injury rates and the associated gender disparity have not diminished. One problem could be the difficulties with the measurements of injury rates and the difficulties with the implementation of thorough large scale injury prevention programs. A second issue could be the transition from conscious awareness during training sessions on technique in the laboratory to unexpected and automatic movements during a training or game involves complicated motor control adaptations. The purpose of this paper is to highlight the issue of motor learning in relation to ACL injury prevention and to post suggestions for future research. ACL injury prevention programs addressing explicit rules regarding desired landing positions by emphasizing proper alignment of the hip, knee, and ankle are reported in the literature. This may very well be a sensible way, but the use of explicit strategies may be less suitable for the acquisition of the control of complex motor skills (Maxwell et al. J Sports Sci 18:111-120, 2000). Sufficient literature on motor learning and it variations point in that direction

    Regularity of center-of-pressure trajectories depends on the amount of attention invested in postural control

    Get PDF
    The influence of attention on the dynamical structure of postural sway was examined in 30 healthy young adults by manipulating the focus of attention. In line with the proposed direct relation between the amount of attention invested in postural control and regularity of center-of-pressure (COP) time series, we hypothesized that: (1) increasing cognitive involvement in postural control (i.e., creating an internal focus by increasing task difficulty through visual deprivation) increases COP regularity, and (2) withdrawing attention from postural control (i.e., creating an external focus by performing a cognitive dual task) decreases COP regularity. We quantified COP dynamics in terms of sample entropy (regularity), standard deviation (variability), sway-path length of the normalized posturogram (curviness), largest Lyapunov exponent (local stability), correlation dimension (dimensionality) and scaling exponent (scaling behavior). Consistent with hypothesis 1, standing with eyes closed significantly increased COP regularity. Furthermore, variability increased and local stability decreased, implying ineffective postural control. Conversely, and in line with hypothesis 2, performing a cognitive dual task while standing with eyes closed led to greater irregularity and smaller variability, suggesting an increase in the “efficiency, or “automaticity” of postural control”. In conclusion, these findings not only indicate that regularity of COP trajectories is positively related to the amount of attention invested in postural control, but also substantiate that in certain situations an increased internal focus may in fact be detrimental to postural control

    Effect of a Dual Task on Postural Control in Dyslexic Children

    Get PDF
    Several studies have examined postural control in dyslexic children; however, their results were inconclusive. This study investigated the effect of a dual task on postural stability in dyslexic children. Eighteen dyslexic children (mean age 10.3±1.2 years) were compared with eighteen non-dyslexic children of similar age. Postural stability was recorded with a platform (TechnoConcept®) while the child, in separate sessions, made reflex horizontal and vertical saccades of 10° of amplitude, and read a text silently. We measured the surface and the mean speed of the center of pressure (CoP). Reading performance was assessed by counting the number of words read during postural measures. Both groups of children were more stable while performing saccades than while reading a text. Furthermore, dyslexic children were significantly more unstable than non-dyslexic children, especially during the reading task. Finally, the number of words read by dyslexic children was significantly lower than that of non-dyslexic children and, in contrast to the non-dyslexic children. In line with the U-shaped non-linear interaction model, we suggest that the attention consumed by the reading task could be responsible for the loss of postural control in both groups of children. The postural instability observed in dyslexic children supports the hypothesis that such children have a lack of integration of multiple sensorimotor inputs

    The influence of early aging on eye movements during motor simulation

    Get PDF
    Movement based interventions such as imagery and action observation are used increasingly to support physical rehabilitation of adults during early aging. The efficacy of these more covert approaches is based on an intuitively appealing assumption that movement execution, imagery and observation share neural substrate; alteration of one influences directly the function of the other two. Using eye movement metrics this paper reports findings that question the congruency of the three conditions. The data reveal that simulating movement through imagery and action observation may offer older adults movement practice conditions that are not constrained by the age-related decline observed in physical conditions. In addition, the findings provide support for action observation as a more effective technique for movement reproduction in comparison to imagery. This concern for imagery was also seen in the less congruent temporal relationship in movement time between imagery and movement execution suggesting imagery inaccuracy in early aging
    corecore