70 research outputs found

    Profiling unauthorized natural resource users for better targeting of conservation interventions

    Get PDF
    Unauthorized use of natural resources is a key threat to many protected areas. Approaches to reducing this threat include law enforcement and integrated conservation and development (ICD) projects, but for such ICDs to be targeted effectively, it is important to understand who is illegally using which natural resources and why. The nature of unauthorized behavior makes it difficult to ascertain this information through direct questioning. Bwindi Impenetrable National Park, Uganda, has many ICD projects, including authorizing some local people to use certain nontimber forest resources from the park. However, despite over 25 years of ICD, unauthorized resource use continues. We used household surveys, indirect questioning (unmatched count technique), and focus group discussions to generate profiles of authorized and unauthorized resource users and to explore motivations for unauthorized activity. Overall, unauthorized resource use was most common among people from poor households who lived closest to the park boundary and farthest from roads and trading centers. Other motivations for unauthorized resource use included crop raiding by wild animals, inequity of revenue sharing, and lack of employment, factors that created resentment among the poorest communities. In some communities, benefits obtained from ICD were reported to be the greatest deterrents against unauthorized activity, although law enforcement ranked highest overall. Despite the sensitive nature of exploring unauthorized resource use, management‐relevant insights into the profiles and motivations of unauthorized resource users can be gained from a combination of survey techniques, as adopted here. To reduce unauthorized activity at Bwindi, we suggest ICD benefit the poorest people living in remote areas and near the park boundary by providing affordable alternative sources of forest products and addressing crop raiding. To prevent resentment from driving further unauthorized activity, ICDs should be managed transparently and equitably

    Gorillas in the crossfire: population dynamics of the Virunga mountain gorillas over the past three decades

    Get PDF
    Small populations are particularly susceptible to disturbance. Routine censusing to monitor changes is important for understanding both population dynamics and the effectiveness of conservation strategies. Mountain gorillas Gorilla beringei beringei in the Virunga Volcanoes region of Rwanda, Uganda and the Democratic Republic of Congo have been censused five times since 1970. However, due to war and political unrest in the region since 1990, no census had been conducted since 1989, when the population was thought to number 324 gorillas. In 2000 we estimated population size using repeated observations of 17 habituated groups and information on 15 unhabituated groups obtained during patrols. The minimum population was 359 gorillas, and a best-case scenario correcting for groups that might not have been counted was 395. Using the minimum population and best-case scenario respectively, this represents a 0.9% or 1.8% annual growth rate over the last decade and 1.0% or 1.3% annual growth rate since 1972. This is lower than growth estimates made in several population viability analyses, but approximately 5% of the 1989 population is known to have died due to military activity over the last decade. Different subsets of the population exhibited different responses to disturbance caused by war. We discuss conservation strategies that are likely to have contributed to an increase in the gorilla population during this time of turmoil. While the population has grown, the results should be viewed with caution, not only because all known growth during the last decade can be attributed to one subset of the population, but also because the region is still plagued by political unrest

    Quantifying compressible groundwater storage by combining cross-hole seismic surveys and head response to atmospheric tides

    Get PDF
    Groundwater specific storage varies by orders of magnitude, is difficult to quantify, and prone to significant uncertainty. Estimating specific storage using aquifer testing is hampered by the nonuniqueness in the inversion of head data and the assumptions of the underlying conceptual model. We revisit confined poroelastic theory and reveal that the uniaxial specific storage can be calculated mainly from undrained poroelastic properties, namely, uniaxial bulk modulus, loading efficiency, and the Biot-Willis coefficient. In addition, literature estimates of the solid grain compressibility enables quantification of subsurface poroelastic parameters using field techniques such as cross-hole seismic surveys and loading efficiency from the groundwater responses to atmospheric tides. We quantify and compare specific storage depth profiles for two field sites, one with deep aeolian sands and another with smectitic clays. Our new results require bulk density and agree well when compared to previous approaches that rely on porosity estimates. While water in clays responds to stress, detailed sediment characterization from a core illustrates that the majority of water is adsorbed onto minerals leaving only a small fraction free to drain. This, in conjunction with a thorough analysis using our new method, demonstrates that specific storage has a physical upper limit of (Formula presented.) m−1. Consequently, if larger values are derived using aquifer hydraulic testing, then the conceptual model that has been used needs reappraisal. Our method can be used to improve confined groundwater storage estimates and refine the conceptual models used to interpret hydraulic aquifer tests

    Back-action Evading Measurements of Nanomechanical Motion

    Get PDF
    When performing continuous measurements of position with sensitivity approaching quantum mechanical limits, one must confront the fundamental effects of detector back-action. Back-action forces are responsible for the ultimate limit on continuous position detection, can also be harnessed to cool the observed structure, and are expected to generate quantum entanglement. Back-action can also be evaded, allowing measurements with sensitivities that exceed the standard quantum limit, and potentially allowing for the generation of quantum squeezed states. We realize a device based on the parametric coupling between an ultra-low dissipation nanomechanical resonator and a microwave resonator. Here we demonstrate back-action evading (BAE) detection of a single quadrature of motion with sensitivity 4 times the quantum zero-point motion, back-action cooling of the mechanical resonator to n = 12 quanta, and a parametric mechanical pre-amplification effect which is harnessed to achieve position resolution a factor 1.3 times quantum zero-point motion.Comment: 19 pages (double-spaced) including 4 figures and reference

    Significant loss of mitochondrial diversity within the last century due to extinction of peripheral populations in eastern gorillas

    Get PDF
    Species and populations are disappearing at an alarming rate as a direct result of human activities. Loss of genetic diversity associated with population decline directly impacts species' long-term survival. Therefore, preserving genetic diversity is of considerable conservation importance. However, to assist in conservation efforts, it is important to understand how genetic diversity is spatially distributed and how it changes due to anthropogenic pressures. In this study, we use historical museum and modern faecal samples of two critically endangered eastern gorilla taxa, Grauer's (Gorilla beringei graueri) and mountain gorillas (Gorilla beringei beringei), to directly infer temporal changes in genetic diversity within the last century. Using over 100 complete mitochondrial genomes, we observe a significant decline in haplotype and nucleotide diversity in Grauer's gorillas. By including historical samples from now extinct populations we show that this decline can be attributed to the loss of peripheral populations rather than a decrease in genetic diversity within the core range of the species. By directly quantifying genetic changes in the recent past, our study shows that human activities have severely impacted eastern gorilla genetic diversity within only four to five generations. This rapid loss calls for dedicated conservation actions, which should include preservation of the remaining peripheral populations.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Extreme Conservation Leads to Recovery of the Virunga Mountain Gorillas

    Get PDF
    As wildlife populations are declining, conservationists are under increasing pressure to measure the effectiveness of different management strategies. Conventional conservation measures such as law enforcement and community development projects are typically designed to minimize negative human influences upon a species and its ecosystem. In contrast, we define “extreme” conservation as efforts targeted to deliberately increase positive human influences, including veterinary care and close monitoring of individual animals. Here we compare the impact of both conservation approaches upon the population growth rate of the critically endangered Virunga mountain gorillas (Gorilla beringei beringei), which increased by 50% since their nadir in 1981, from approximately 250 to nearly 400 gorillas. Using demographic data from 1967–2008, we show an annual decline of 0.7%±0.059% for unhabituated gorillas that received intensive levels of conventional conservation approaches, versus an increase 4.1%±0.088% for habituated gorillas that also received extreme conservation measures. Each group of habituated gorillas is now continuously guarded by a separate team of field staff during daylight hours and receives veterinary treatment for snares, respiratory disease, and other life-threatening conditions. These results suggest that conventional conservation efforts prevented a severe decline of the overall population, but additional extreme measures were needed to achieve positive growth. Demographic stochasticity and socioecological factors had minimal impact on variability in the growth rates. Veterinary interventions could account for up to 40% of the difference in growth rates between habituated versus unhabituated gorillas, with the remaining difference likely arising from greater protection against poachers. Thus, by increasing protection and facilitating veterinary treatment, the daily monitoring of each habituated group contributed to most of the difference in growth rates. Our results argue for wider consideration of extreme measures and offer a startling view of the enormous resources that may be needed to conserve some endangered species

    Copy Number Variants Are Ovarian Cancer Risk Alleles at Known and Novel Risk Loci

    Get PDF

    Home range and frugivory patterns of mountain gorillas in Bwindi Impenetrable National Park, Uganda

    No full text

    Primatology comes to Africa

    No full text
    corecore