64 research outputs found

    Free-electron lasers : echoes of photons past

    Get PDF
    High-harmonic generation is an established method to significantly upshift laser photon energies. Now, researchers at the SLAC National Accelerator Laboratory have used echo concepts to generate coherent high-harmonic output from an electron-beam light source

    Free electron laser generation of X-ray Poincaré beams

    Get PDF
    An optics-free method is proposed to generate x-ray radiation with spatially variant states of polarization via an afterburner extension to a free electron laser. Control of the polarization in the transverse plane is obtained through the overlap of different coherent transverse light distributions radiated from a bunched electron beam in two consecutive orthogonally polarised undulators. Different transverse profiles are obtained by emitting at a higher harmonic in one or both of the undulators. This method enables the generation of beams structured in their intensity, phase, and polarization - so-called Poincaré beams - at high powers with tunable wavelengths. Simulations are used to demonstrate the generation of two different classes of light with spatially inhomogeneous polarization - cylindrical vector beams and full Poincaré beams

    Design of sub-Angstrom compact free-electron laser source

    Get PDF
    In this paper, we propose for first time practical parameters to construct a compact sub-Angstrom Free Electron Laser (FEL) based on Compton backscattering. Our recipe is based on using picocoulomb electron bunch, enabling very low emittance and ultracold electron beam. We assume the FEL is operating in a quantum regime of Self Amplified Spontaneous Emission (SASE). The fundamental quantum feature is a significantly narrower spectrum of the emitted radiation relative to classical SASE. The quantum regime of the SASE FEL is reached when the momentum spread of the electron beam is smaller than the photon recoil momentum. Following the formulae describing SASE FEL operation, realistic designs for quantum FEL experiments are proposed. We discuss the practical constraints that influence the experimental parameters. Numerical simulations of power spectra and intensities are presented and attractive radiation characteristics such as high flux, narrow linewidth, and short pulse structure are demonstrated

    Approved but non-funded vaccines: Accessing individual protection

    Get PDF
    AbstractFunded immunization programs are best able to achieve high participation rates, optimal protection of the target population, and indirect protection of others. However, in many countries public funding of approved vaccines can be substantially delayed, limited to a portion of the at-risk population or denied altogether. In these situations, unfunded vaccines are often inaccessible to individuals at risk, allowing potentially avoidable morbidity and mortality to continue to occur. We contend that private access to approved but unfunded vaccines should be reconsidered and encouraged, with recognition that individuals have a prerogative to take advantage of a vaccine of potential benefit to them whether it is publicly funded or not. Moreover, numbers of “approved but unfunded” vaccines are likely to grow because governments will not be able to fund all future vaccines of potential benefit to some citizens. New strategies are needed to better use unfunded vaccines even though the net benefits will fall short of those of funded programs.Canada, after recent delays funding several new vaccine programs, has developed means to encourage private vaccine use. Physicians are required to inform relevant patients about risks and benefits of all recommended vaccines, publicly funded or not. Likewise, some provincial public health departments now recommend and promote both funded and unfunded vaccines. Pharmacists are key players in making unfunded vaccines locally available. Professional organizations are contributing to public and provider education about unfunded vaccines (e.g. herpes zoster, not funded in any province). Vaccine companies are gaining expertise with direct-to-consumer advertising. However, major challenges remain, such as making unfunded vaccines more available to low-income families and overcoming public expectations that all vaccines will be provided cost-free, when many other recommended personal preventive measures are user-pay. The greatest need is to change the widespread perception that approved vaccines should be publicly funded or ignored

    Towards single-cycle attosecond light from accelerators

    Get PDF
    The Free-Electron Laser (FEL) is a cutting-edge, accelerator-based instrument that has the potential to provide simultaneous access to the spatial and temporal resolution of the atomic world. In a FEL, ultra-short electron bunches from an accelerator are passed through a long undulator magnet to generate coherent light. Recently, scientists from SLAC demonstrated the first generation of attosecond hard X-ray pulses, using the Linac Coherent Light Source. Now, as described in the review article by Alan Mak et al. [1], researchers are proposing developments that will make the FEL a fully coherent, singlecycle (attosecond) X-ray laser. The new concepts build upon a strong nexus between linear accelerators, FELs and quantum lasers, to produce extreme attosecond pulses with controllable waveforms

    Attosecond single-cycle undulator light : a review

    Get PDF
    Research at modern light sources continues to improve our knowledge of the natural world, from the subtle workings of life to matter under extreme conditions. Free-electron lasers, for instance, have enabled the characterization of biomolecular structures with sub-angstrom spatial resolution, and paved the way to controlling the molecular functions. On the other hand, attosecond temporal resolution is necessary to broaden our scope of the ultrafast world. Here we discuss attosecond pulse generation beyond present capabilities. Furthermore, we review three recently proposed methods of generating attosecond x-ray pulses. These novel methods exploit the coherent radiation of microbunched electrons in undulators and the tailoring of the emitted wavefronts. The computed pulse energy outperforms pre-existing technologies by three orders of magnitude. Specifically, our simulations of the proposed Soft X-ray Laser at MAX IV (Lund, Sweden) show that a pulse duration of 50-100 as and a pulse energy up to 5 μJ is feasible with the novel methods. In addition, the methods feature pulse shape control, enable the incorporation of orbital angular momentum, and can be used in combination with modern compact free-electron laser setups

    The SOLAS air-sea gas exchange experiment (SAGE) 2004

    Get PDF
    Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part II: Topical Studies in Oceanography 58 (2011): 753-763, doi:10.1016/j.dsr2.2010.10.015.The SOLAS air-sea gas exchange experiment (SAGE) was a multiple-objective study investigating gas-transfer processes and the influence of iron fertilisation on biologically driven gas exchange in high-nitrate low-silicic acid low-chlorophyll (HNLSiLC) Sub-Antarctic waters characteristic of the expansive Subpolar Zone of the southern oceans. This paper provides a general introduction and summary of the main experimental findings. The release site was selected from a pre-voyage desktop study of environmental parameters to be in the south-west Bounty Trough (46.5°S 172.5°E) to the south-east of New Zealand and the experiment conducted between mid-March and mid-April 2004. In common with other mesoscale iron addition experiments (FeAX’s), SAGE was designed as a Lagrangian study quantifying key biological and physical drivers influencing the air-sea gas exchange processes of CO2, DMS and other biogenic gases associated with an iron-induced phytoplankton bloom. A dual tracer SF6/3He release enabled quantification of both the lateral evolution of a labelled volume (patch) of ocean and the air-sea tracer exchange at the 10’s of km’s scale, in conjunction with the iron fertilisation. Estimates from the dual-tracer experiment found a quadratic dependency of the gas exchange coefficient on windspeed that is widely applicable and describes air-sea gas exchange in strong wind regimes. Within the patch, local and micrometeorological gas exchange process studies (100 m scale) and physical variables such as near-surface turbulence, temperature microstructure at the interface, wave properties, and wind speed were quantified to further assist the development of gas exchange models for high-wind environments. There was a significant increase in the photosynthetic competence (Fv/Fm) of resident phytoplankton within the first day following iron addition, but in contrast to other FeAX’s, rates of net primary production and column-integrated chlorophyll a concentrations had only doubled relative to the unfertilised surrounding waters by the end of the experiment. After 15 days and four iron additions totalling 1.1 tonne Fe2+, this was a very modest response compared to the other mesoscale iron enrichment experiments. An investigation of the factors limiting bloom development considered co- limitation by light and other nutrients, the phytoplankton seed-stock and grazing regulation. Whilst incident light levels and the initial Si:N ratio were the lowest recorded in all FeAX’s to date, there was only a small seed-stock of diatoms (less than 1% of biomass) and the main response to iron addition was by the picophytoplankton. A high rate of dilution of the fertilised patch relative to phytoplankton growth rate, the greater than expected depth of the surface mixed layer and microzooplankton grazing were all considered as factors that prevented significant biomass accumulation. In line with the limited response, the enhanced biological draw-down of pCO2 was small and masked by a general increase in pCO2 due to mixing with higher pCO2 waters. The DMS precursor DMSP was kept in check through grazing activity and in contrast to most FeAX’s dissolved dimethylsulfide (DMS) concentration declined through the experiment. SAGE is an important low-end member in the range of responses to iron addition in FeAX’s. In the context of iron fertilisation as a geoengineering tool for atmospheric CO2 removal, SAGE has clearly demonstrated that a significant proportion of the low iron ocean may not produce a phytoplankton bloom in response to iron addition.SAGE was jointly funded through the New Zealand Foundation for Research, Science and Technology (FRST) programs (C01X0204) "Drivers and Mitigation of Global Change" and (C01X0223) "Ocean Ecosystems: Their Contribution to NZ Marine Productivity." Funding was also provided for specific collaborations by the US National Science Foundation from grants OCE-0326814 (Ward), OCE-0327779 (Ho), and OCE 0327188 OCE-0326814 (Minnett) and the UK Natural Environment Research Council NER/B/S/2003/00282 (Archer). The New Zealand International Science and Technology (ISAT) linkages fund provided additional funding (Archer and Ziolkowski), and the many collaborator institutions also provided valuable support

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival
    corecore