162 research outputs found

    Improvements in Cycling Time Trial Performance Are Not Sustained Following the Acute Provision of Challenging and Deceptive Feedback

    Get PDF
    The provision of performance-related feedback during exercise is acknowledged as an influential external cue used to inform pacing decisions. The provision of this feedback in a challenging or deceptive context allows research to explore how feedback can be used to improve performance and influence perceptual responses. However, the effects of deception on both acute and residual responses have yet to be explored, despite potential application for performance enhancement. Therefore, this study investigated the effects of challenging and deceptive feedback on perceptual responses and performance in self-paced cycling time trials (TT) and explored whether changes in performance are sustained in a subsequent TT following the disclosure of the deception. Seventeen trained male cyclists were assigned to either an accurate or deceptive feedback group and performed four 16.1 km cycling TTs; 1 and 2) ride-alone baseline TTs where a fastest baseline (FBL) performance was identified, 3) a TT against a virtual avatar representing 102% of their FBL performance (PACER), and 4) a subsequent ride-alone TT (SUB). The deception group, however, were initially informed that the avatar accurately represented their FBL, but prior to SUB were correctly informed of the nature of the avatar. Affect, self-efficacy and RPE were measured every quartile. Both groups performed PACER faster than FBL and SUB (p < 0.05) and experienced lower affect (p = 0.016), lower self-efficacy (p = 0.011), and higher RPE (p < 0.001) in PACER than FBL. No significant differences were found between FBL and SUB for any variable. The presence of the pacer rather than the manipulation of performance beliefs acutely facilitates TT performance and perceptual responses. Revealing that athletes’ performance beliefs were falsely negative due to deceptive feedback provision has no effect on subsequent perceptions or performance. A single experiential exposure may not be sufficient to produce meaningful changes in the performance beliefs of trained individuals beyond the acute setting

    Sodium bicarbonate and high-intensity-cycling capacity: variability in responses

    Get PDF
    Purpose: The aim of this study was to determine whether gastrointestinal (GI) distress affects the ergogenicity of sodium bicarbonate and whether the degree of alkalaemia or other metabolic responses are different between individuals who improve exercise capacity and those who do not. Methods: Twenty-one males completed two cycling capacity tests at 110% of maximum power output. Participants were supplemented with 0.3 g∙kg-1BM of either placebo (maltodextrin) or sodium bicarbonate (SB). Blood pH, bicarbonate, base excess and lactate were determined at baseline, pre-exercise, immediately post-exercise and 5 minutes post-exercise. Results: SB supplementation did not significantly increase total work done (TWD) (P = 0.16, 46.8 ± 9.1 vs. 45.6 ± 8.4 kJ, d = 0.14), although magnitude based inferences suggested a 63% likelihood of a positive effect. When data were analysed without four participants who experienced GI discomfort, TWD (P = 0.01) was significantly improved with SB. Immediately post-exercise blood lactate was higher in SB for the individuals who improved but not for those who didn’t. There were also differences in the pre to post-exercise change in blood pH, bicarbonate and base excess between individuals who improved and individuals who did not. Conclusions: SB improved high intensity cycling capacity, but only with the exclusion of participants experiencing GI discomfort. Differences in blood responses suggest that sodium bicarbonate may not be beneficial to all individuals. Magnitude based inferences suggested that the exercise effects are unlikely to be negative; therefore individuals should determine whether they respond well to sodium bicarbonate supplementation prior to competition

    The Reproducibility of Blood Acid Base Responses in Male Collegiate Athletes Following Individualised Doses of Sodium Bicarbonate: A Randomised Controlled Crossover Study

    Get PDF
    Background: Current evidence suggests sodium bicarbonate (NaHCO3) should be ingested based upon the individualised alkalotic peak of either blood pH or bicarbonate (HCO3−) because of large inter-individual variations (10–180 min). If such a strategy is to be practical, the blood analyte response needs to be reproducible. Objective: This study aimed to evaluate the degree of reproducibility of both time to peak (TTP) and absolute change in blood pH, HCO3− and sodium (Na+) following acute NaHCO3 ingestion. Methods: Male participants (n = 15) with backgrounds in rugby, football or sprinting completed six randomised treatments entailing ingestion of two doses of 0.2 g·kg−1 body mass (BM) NaHCO3 (SBC2a and b), two doses of 0.3 g·kg−1 BM NaHCO3 (SBC3a and b) or two control treatments (CON1a and b) on separate days. Blood analysis included pH, HCO3− and Na+ prior to and at regular time points following NaHCO3 ingestion over a 3-h period. Results: HCO3− displayed greater reproducibility than pH in intraclass correlation coefficient (ICC) analysis for both TTP (HCO3− SBC2 r = 0.77, P = 0.003; SBC3 r = 0.94, P < 0.001; pH SBC2 r = 0.62, P = 0.044; SBC3 r = 0.71, P = 0.016) and absolute change (HCO3− SBC2 r = 0.89, P < 0.001; SBC3 r = 0.76, P = 0.008; pH SBC2 r = 0.84, P = 0.001; SBC3 r = 0.62, P = 0.041). Conclusion: Our results indicate that both TTP and absolute change in HCO3− is more reliable than pH. As such, these data provide support for an individualised NaHCO3 ingestion strategy to consistently elicit peak alkalosis before exercise. Future work should utilise an individualised NaHCO3 ingestion strategy based on HCO3− responses and evaluate effects on exercise performance

    Multisensory information facilitates reaction speed by enlarging activity difference between superior colliculus hemispheres in rats

    Get PDF
    Animals can make faster behavioral responses to multisensory stimuli than to unisensory stimuli. The superior colliculus (SC), which receives multiple inputs from different sensory modalities, is considered to be involved in the initiation of motor responses. However, the mechanism by which multisensory information facilitates motor responses is not yet understood. Here, we demonstrate that multisensory information modulates competition among SC neurons to elicit faster responses. We conducted multiunit recordings from the SC of rats performing a two-alternative spatial discrimination task using auditory and/or visual stimuli. We found that a large population of SC neurons showed direction-selective activity before the onset of movement in response to the stimuli irrespective of stimulation modality. Trial-by-trial correlation analysis showed that the premovement activity of many SC neurons increased with faster reaction speed for the contraversive movement, whereas the premovement activity of another population of neurons decreased with faster reaction speed for the ipsiversive movement. When visual and auditory stimuli were presented simultaneously, the premovement activity of a population of neurons for the contraversive movement was enhanced, whereas the premovement activity of another population of neurons for the ipsiversive movement was depressed. Unilateral inactivation of SC using muscimol prolonged reaction times of contraversive movements, but it shortened those of ipsiversive movements. These findings suggest that the difference in activity between the SC hemispheres regulates the reaction speed of motor responses, and multisensory information enlarges the activity difference resulting in faster responses

    Sodium bicarbonate supplementation improves severe-intensity intermittent exercise under moderate acute hypoxic conditions

    Get PDF
    Acute moderate hypoxic exposure can substantially impair exercise performance, which occurs with a concurrent exacerbated rise in hydrogen cation (H+) production. The purpose of this study was therefore, to alleviate this acidic stress through sodium bicarbonate (NaHCO3) supplementation and determine the corresponding effects on severe intensity intermittent exercise performance. Eleven recreationally active individuals participated in this randomised, double-blind, crossover study performed under acute normobaric hypoxic conditions (FiO2% = 14.5%). Pre-experimental trials involved the determination of time to attain peak bicarbonate anion concentrations ([HCO3-]) following NaHCO3 ingestion. The intermittent exercise tests involved repeated 60 s work in their severe intensity domain and 30 s recovery at 20 W to exhaustion. Participants ingested either 0.3 g·kg bm-1 of NaHCO3 or a matched placebo of 0.21 g·kg bm-1 of sodium chloride prior to exercise. Exercise tolerance (+110.9 ± 100.6 s; 95% CI: 43.3 to 178 s; g = 1.0) and work performed in the severe intensity domain (+5.8 ± 6.6 kJ; 95% CI: 1.3 to 9.9 kJ; g = 0.8) were enhanced with NaHCO3 supplementation. Furthermore, a larger post-exercise blood lactate concentration was reported in the experimental group (+4 ± 2.4 mmol·l-1; 95% CI: 2.2 to 5.9; g = 1.8), while blood [HCO3-] and pH remained elevated in the NaHCO3 condition throughout experimentation. In conclusion, this study reported a positive effect of NaHCO3 under acute moderate hypoxic conditions during intermittent exercise and therefore, may offer an ergogenic strategy to mitigate hypoxic induced declines in exercise performance

    Short-Term Synaptic Plasticity in the Dentate Gyrus of Monkeys

    Get PDF
    The hippocampus plays an important role in learning and memory. Synaptic plasticity in the hippocampus, short-term and long-term, is postulated to be a neural substrate of memory trace. Paired-pulse stimulation is a standard technique for evaluating a form of short-term synaptic plasticity in rodents. However, evidence is lacking for paired-pulse responses in the primate hippocampus. In the present study, we recorded paired-pulse responses in the dentate gyrus of monkeys while stimulating to the medial part of the perforant path at several inter-pulse intervals (IPIs) using low and high stimulus intensities. When the stimulus intensity was low, the first pulse produced early strong depression (at IPIs of 10–30 ms) and late slight depression (at IPIs of 100–1000 ms) of field excitatory postsynaptic potentials (fEPSPs) generated by the second pulse, interposing no depression IPIs (50–70 ms). When the stimulus intensity was high, fEPSPs generated by the second pulse were depressed by the first pulse at all IPIs except for the longest one (2000 ms). Population spikes (PSs) generated by the second pulse were completely blocked or strongly depressed at shorter IPIs (10–100 or 200 ms, respectively), while no depression or slight facilitation occurred at longer IPIs (500–2000 ms). Administration of diazepam slightly increased fEPSPs, while it decreased PSs produced by the first pulse. It also enhanced the facilitation of PSs produced by the second stimulation at longer IPIs. The present results, in comparison with previous studies using rodents, indicate that paired-pulse responses of fEPSPs in the monkey are basically similar to those of rodents, although paired-pulse responses of PSs in the monkey are more delayed than those in rodents and have a different sensitivity to diazepam

    Principal component analysis of ensemble recordings reveals cell assemblies at high temporal resolution

    Get PDF
    Simultaneous recordings of many single neurons reveals unique insights into network processing spanning the timescale from single spikes to global oscillations. Neurons dynamically self-organize in subgroups of coactivated elements referred to as cell assemblies. Furthermore, these cell assemblies are reactivated, or replayed, preferentially during subsequent rest or sleep episodes, a proposed mechanism for memory trace consolidation. Here we employ Principal Component Analysis to isolate such patterns of neural activity. In addition, a measure is developed to quantify the similarity of instantaneous activity with a template pattern, and we derive theoretical distributions for the null hypothesis of no correlation between spike trains, allowing one to evaluate the statistical significance of instantaneous coactivations. Hence, when applied in an epoch different from the one where the patterns were identified, (e.g. subsequent sleep) this measure allows to identify times and intensities of reactivation. The distribution of this measure provides information on the dynamics of reactivation events: in sleep these occur as transients rather than as a continuous process
    corecore