86 research outputs found

    The radio spectra and -ve inertial defects behavior of planar aromatic heterocycles

    Get PDF
    The simplest tricyclic aromatic nitrogen heterocyclic molecules 5,6 benzoquinoline and 7,8 benzoquinoline are possible candidates for detection of aromatic systems in the interstellar medium. Therefore the pure rotational spectra have been recorded using frequency-scanned Stark modulated, jet-cooled millimetre wave absorption spectroscopy (48-87 GHz) and Fourier Transform Microwave (FT MW) spectroscopy (2-26 GHz) of a supersonic rotationally cold molecular jet. Guided by ab initio molecular orbital predictions, spectral analysis of mm wave spectra, and higher resolution FT MW spectroscopy provided accurate rotational and centrifugal distortion constants together with 14N nuclear quadrupole coupling constants for both species. The determined inertial defects, along with those of similar species are used to develop an empirical formula for calculation of inertial defects of aromatic ring systems. The predictive ability of the formula is shown to be excellent for planar species with a number of pronounced out of plane vibrations. The resultant constants are of sufficient accuracy to be used in potential astrophysical searches.\footnote{We gratefully acknowledge support from the Deutsche Forschungsgemeinschaft, the Deutsche Akademische Austauschdienst, as well as the Land Niedersachsen (J.-U.G). DMcN also thanks the Royal Society of Chemistry for their generous travel support.

    FTIR microspectroscopy for rapid screening and monitoring of polyunsaturated fatty acid production in commercially valuable marine yeasts and protists

    Full text link
    The increase in polyunsaturated fatty acid (PUFA) consumption has prompted research into alternative resources other than fish oil. In this study, a new approach based on focal-plane-array Fourier transform infrared (FPA-FTIR) microspectroscopy and multivariate data analysis was developed for the characterisation of some marine microorganisms. Cell and lipid compositions in lipid-rich marine yeasts collected from the Australian coast were characterised in comparison to a commercially available PUFA-producing marine fungoid protist, thraustochytrid. Multivariate classification methods provided good discriminative accuracy evidenced from (i) separation of the yeasts from thraustochytrids and distinct spectral clusters among the yeasts that conformed well to their biological identities, and (ii) correct classification of yeasts from a totally independent set using cross-validation testing. The findings further indicated additional capability of the developed FPA-FTIR methodology, when combined with partial least squares regression (PLSR) analysis, for rapid monitoring of lipid production in one of the yeasts during the growth period, which was achieved at a high accuracy compared to the results obtained from the traditional lipid analysis based on gas chromatography. The developed FTIR-based approach when coupled to programmable withdrawal devices and a cytocentrifugation module would have strong potential as a novel online monitoring technology suited for bioprocessing applications and large-scale production

    Destructive effects of murine arthritogenic antibodies to type II collagen on cartilage explants in vitro

    Get PDF
    Certain monoclonal antibodies (mAbs) to type II collagen (CII) induce arthritis in vivo after passive transfer and have adverse effects on chondrocyte cultures and inhibit self assembly of collagen fibrils in vitro. We have examined whether such mAbs have detrimental effects on pre-existing cartilage. Bovine cartilage explants were cultured over 21 days in the presence of two arthritogenic mAbs to CII (CIIC1 or M2139), a non-arthritogenic mAb to CII (CIIF4) or a control mAb (GAD6). Penetration of cartilage by mAb was determined by immunofluorescence on frozen sections and correlated with changes to the extracellular matrix and chondrocytes by morphometric analysis of sections stained with toluidine blue. The effects of mAbs on matrix components were examined by Fourier transform infrared microspectroscopy (FTIRM). A possible role of Fc-binding was investigated using F(ab)(2 )from CIIC1. All three mAbs to CII penetrated the cartilage explants and CIIC1 and M2139, but not CIIF4, had adverse effects that included proteoglycan loss correlating with mAb penetration, the later development in cultures of an abnormal superficial cellular layer, and an increased proportion of empty chondrons. FTIRM showed depletion and denaturation of CII at the explant surface in the presence of CIIC1 or M2139, which paralleled proteoglycan loss. The effects of F(ab)(2 )were greater than those of intact CIIC1. Our results indicate that mAbs to CII can adversely affect preformed cartilage, and that the specific epitope on CII recognised by the mAb determines both arthritogenicity in vivo and adverse effects in vitro. We conclude that antibodies to CII can have pathogenic effects that are independent of inflammatory mediators or Fc-binding

    FT-MW AND MILLIMETER WAVE SPECTROSCOPY OF PANHs: PHENANTHRIDINE, ACRIDINE, AND 1,10-PHENANTHROLINE

    Get PDF
    ABSTRACT The pure rotational spectra of phenanthridine, acridine, and 1,10-phenanthroline, small polycyclic aromatic nitrogen heterocycle molecules (PANHs), have been measured and assigned from 2 to 85 GHz. An initial spectral assignment, guided by ab initio molecular orbital predictions, employed broadband Stark modulated millimeter wave absorption spectroscopy of a supersonic rotationally cold molecular beam, yielding a preliminary set of rotational and centrifugal distortion constants. Subsequent spectral analysis employed Fourier transform microwave (FT-MW) spectroscopy of a supersonic rotationally cold molecular beam. The extremely high spectral resolution of the FT-MW instrument yielded improved rotational constants and centrifugal distortion constants, together with nitrogen quadrupole coupling constants, for all three species. Density functional theory (DFT) calculations at the B3LYP level of theory employing the cc-pVTZ and 6-311+G ÃÃ basis sets are shown to closely predict rotational constants and to be useful in predicting quadrupole coupling constants and dipole moments for such PANH species. The data presented here will be useful for deep radio astronomical searches for PANHs employing large radio telescopes

    Conformational steering in dicarboxy acids: the native structure of succinic acid

    Get PDF
    Succinic acid, a dicarboxylic acid molecule, has been investigated spectroscopically with computational support to elucidate the complex aspects of its conformational composition. Due to the torsional freedom of the carbon backbone and hydroxy groups, a large number of potentially plausible conformers can be generated with an indication that the gauche conformer is favored over the trans form. The microwave and millimeter wave spectra have been analyzed and accurate spectroscopic constants have been derived that correlate best with those of the lowest energy gauche conformer. For an unambiguous conformational identification measurements were extended to the monosubstituted isotopologues, precisely determining the structural properties. Besides bond distances and angles, particularly the dihedral angle has been determined to be 67.76(11)°, confirming the anomalous tendency of the methylene units to favor gauche conformers when a short aliphatic segment is placed between two carbonyl groups.Spanish Ministry of Science and Innovation/CTQ2011-22923Spanish Ministry of Science and Innovation/CGL2011-2244

    The folded tree

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/32525/1/0000623.pd

    Gas-phase infrared spectra of cationized nitrogen-substituted polycyclic aromatic hydrocarbons

    Get PDF
    Gas-phase infrared spectra of several ionized nitrogen substituted polycyclic aromatic hydrocarbons (PANHs) have been recorded in the 600-1600 cm(-1) region via IR multiple-photon dissociation (IRMPD) spectroscopy. The UV photoionized PANH ions are trapped and isolated in a quadrupole ion trap where they are irradiated with an IR free electron laser. The PANHs were studied in their radical cation (PANH(+)) and protonated (H+ PANH) forms, and include quinoline, isoquinoline, phenanthridine, benzo[h] quinoline, acridine, and dibenzo[f,h] quinoline. Experimental IRMPD spectra were interpreted with the aid of density functional theory methods. The PANH(+) IR spectra are found to resemble those of their respective non-nitrogenated PAH cations. The IR spectra of H+ PANHs are significantly different owing to the NH inplane bending vibration, which generally couples very well with the aromatic CH bending and CC stretching modes. Implications of the NPAH (+, H+) laboratory spectra are discussed for the astrophysical IR emissions and, in particular, for the band at 6.2 mu m

    Enhancing Interdisciplinary Instruction in General and Special Education: Thematic Units and Technology

    Get PDF
    This article discusses interdisciplinary thematic units in the context of special and general education curricula and focuses on ways technology can be used to enhance interdisciplinary thematic units. Examples of curriculum integration activities enhanced by technology are provided in the context of productivity tools, presentation and multimedia tools, contextual themed software, and Web-based activities.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline

    Monitoring the reversible B to A-like transition of DNA in eukaryotic cells using Fourier transform infrared spectroscopy

    Get PDF
    The ability to detect DNA conformation in eukaryotic cells is of paramount importance in understanding how some cells retain functionality in response to environmental stress. It is anticipated that the B to A transition might play a role in resistance to DNA damage such as heat, desiccation and toxic damage. To this end, conformational detail about the molecular structure of DNA has been derived primarily from in vitro experiments on extracted or synthetic DNA. Here, we report that a B- to A-like DNA conformational change can occur in the nuclei of intact cells in response to dehydration. This transition is reversible upon rehydration in air-dried cells. By systematically monitoring the dehydration and rehydration of single and double-stranded DNA, RNA, extracted nuclei and three types of eukaryotic cells including chicken erythrocytes, mammalian lymphocytes and cancerous rodent fibroblasts using Fourier transform infrared (FTIR) spectroscopy, we unequivocally assign the important DNA conformation marker bands within these cells. We also demonstrate that by applying FTIR spectroscopy to hydrated samples, the DNA bands become sharper and more intense. This is anticipated to provide a methodology enabling differentiation of cancerous from non-cancerous cells based on the increased DNA content inherent to dysplastic and neoplastic tissue
    corecore