74 research outputs found

    The radio spectra and -ve inertial defects behavior of planar aromatic heterocycles

    Get PDF
    The simplest tricyclic aromatic nitrogen heterocyclic molecules 5,6 benzoquinoline and 7,8 benzoquinoline are possible candidates for detection of aromatic systems in the interstellar medium. Therefore the pure rotational spectra have been recorded using frequency-scanned Stark modulated, jet-cooled millimetre wave absorption spectroscopy (48-87 GHz) and Fourier Transform Microwave (FT MW) spectroscopy (2-26 GHz) of a supersonic rotationally cold molecular jet. Guided by ab initio molecular orbital predictions, spectral analysis of mm wave spectra, and higher resolution FT MW spectroscopy provided accurate rotational and centrifugal distortion constants together with 14N nuclear quadrupole coupling constants for both species. The determined inertial defects, along with those of similar species are used to develop an empirical formula for calculation of inertial defects of aromatic ring systems. The predictive ability of the formula is shown to be excellent for planar species with a number of pronounced out of plane vibrations. The resultant constants are of sufficient accuracy to be used in potential astrophysical searches.\footnote{We gratefully acknowledge support from the Deutsche Forschungsgemeinschaft, the Deutsche Akademische Austauschdienst, as well as the Land Niedersachsen (J.-U.G). DMcN also thanks the Royal Society of Chemistry for their generous travel support.

    Destructive effects of murine arthritogenic antibodies to type II collagen on cartilage explants in vitro

    Get PDF
    Certain monoclonal antibodies (mAbs) to type II collagen (CII) induce arthritis in vivo after passive transfer and have adverse effects on chondrocyte cultures and inhibit self assembly of collagen fibrils in vitro. We have examined whether such mAbs have detrimental effects on pre-existing cartilage. Bovine cartilage explants were cultured over 21 days in the presence of two arthritogenic mAbs to CII (CIIC1 or M2139), a non-arthritogenic mAb to CII (CIIF4) or a control mAb (GAD6). Penetration of cartilage by mAb was determined by immunofluorescence on frozen sections and correlated with changes to the extracellular matrix and chondrocytes by morphometric analysis of sections stained with toluidine blue. The effects of mAbs on matrix components were examined by Fourier transform infrared microspectroscopy (FTIRM). A possible role of Fc-binding was investigated using F(ab)(2 )from CIIC1. All three mAbs to CII penetrated the cartilage explants and CIIC1 and M2139, but not CIIF4, had adverse effects that included proteoglycan loss correlating with mAb penetration, the later development in cultures of an abnormal superficial cellular layer, and an increased proportion of empty chondrons. FTIRM showed depletion and denaturation of CII at the explant surface in the presence of CIIC1 or M2139, which paralleled proteoglycan loss. The effects of F(ab)(2 )were greater than those of intact CIIC1. Our results indicate that mAbs to CII can adversely affect preformed cartilage, and that the specific epitope on CII recognised by the mAb determines both arthritogenicity in vivo and adverse effects in vitro. We conclude that antibodies to CII can have pathogenic effects that are independent of inflammatory mediators or Fc-binding

    FT-MW AND MILLIMETER WAVE SPECTROSCOPY OF PANHs: PHENANTHRIDINE, ACRIDINE, AND 1,10-PHENANTHROLINE

    Get PDF
    ABSTRACT The pure rotational spectra of phenanthridine, acridine, and 1,10-phenanthroline, small polycyclic aromatic nitrogen heterocycle molecules (PANHs), have been measured and assigned from 2 to 85 GHz. An initial spectral assignment, guided by ab initio molecular orbital predictions, employed broadband Stark modulated millimeter wave absorption spectroscopy of a supersonic rotationally cold molecular beam, yielding a preliminary set of rotational and centrifugal distortion constants. Subsequent spectral analysis employed Fourier transform microwave (FT-MW) spectroscopy of a supersonic rotationally cold molecular beam. The extremely high spectral resolution of the FT-MW instrument yielded improved rotational constants and centrifugal distortion constants, together with nitrogen quadrupole coupling constants, for all three species. Density functional theory (DFT) calculations at the B3LYP level of theory employing the cc-pVTZ and 6-311+G ÃÃ basis sets are shown to closely predict rotational constants and to be useful in predicting quadrupole coupling constants and dipole moments for such PANH species. The data presented here will be useful for deep radio astronomical searches for PANHs employing large radio telescopes

    The folded tree

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/32525/1/0000623.pd

    Enhancing Interdisciplinary Instruction in General and Special Education: Thematic Units and Technology

    Get PDF
    This article discusses interdisciplinary thematic units in the context of special and general education curricula and focuses on ways technology can be used to enhance interdisciplinary thematic units. Examples of curriculum integration activities enhanced by technology are provided in the context of productivity tools, presentation and multimedia tools, contextual themed software, and Web-based activities.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline

    Monitoring the reversible B to A-like transition of DNA in eukaryotic cells using Fourier transform infrared spectroscopy

    Get PDF
    The ability to detect DNA conformation in eukaryotic cells is of paramount importance in understanding how some cells retain functionality in response to environmental stress. It is anticipated that the B to A transition might play a role in resistance to DNA damage such as heat, desiccation and toxic damage. To this end, conformational detail about the molecular structure of DNA has been derived primarily from in vitro experiments on extracted or synthetic DNA. Here, we report that a B- to A-like DNA conformational change can occur in the nuclei of intact cells in response to dehydration. This transition is reversible upon rehydration in air-dried cells. By systematically monitoring the dehydration and rehydration of single and double-stranded DNA, RNA, extracted nuclei and three types of eukaryotic cells including chicken erythrocytes, mammalian lymphocytes and cancerous rodent fibroblasts using Fourier transform infrared (FTIR) spectroscopy, we unequivocally assign the important DNA conformation marker bands within these cells. We also demonstrate that by applying FTIR spectroscopy to hydrated samples, the DNA bands become sharper and more intense. This is anticipated to provide a methodology enabling differentiation of cancerous from non-cancerous cells based on the increased DNA content inherent to dysplastic and neoplastic tissue

    Chemical analysis of acoustically levitated drops by Raman spectroscopy

    Get PDF
    An experimental apparatus combining Raman spectroscopy with acoustic levitation, Raman acoustic levitation spectroscopy (RALS), is investigated in the field of physical and chemical analytics. Whereas acoustic levitation enables the contactless handling of microsized samples, Raman spectroscopy offers the advantage of a noninvasive method without complex sample preparation. After carrying out some systematic tests to probe the sensitivity of the technique to drop size, shape, and position, RALS has been successfully applied in monitoring sample dilution and preconcentration, evaporation, crystallization, an acid–base reaction, and analytes in a surface-enhanced Raman spectroscopy colloidal suspension

    Models meet data: Challenges and opportunities inimplementing land management in Earth system models

    Get PDF
    As the applications of Earth system models (ESMs) move from general climate projections toward questions of mitigation and adaptation, the inclusion of land management practices in these models becomes crucial. We carried out a survey among modeling groups to show an evolution from models able only to deal with land‐cover change to more sophisticated approaches that allow also for the partial integration of land management changes. For the longer term a comprehensive land management representation can be anticipated for all major models. To guide the prioritization of implementation, we evaluate ten land management practices—forestry harvest, tree species selection, grazing and mowing harvest, crop harvest, crop species selection, irrigation, wetland drainage, fertilization, tillage, and fire—for (1) their importance on the Earth system, (2) the possibility of implementing them in state‐of‐the‐art ESMs, and (3) availability of required input data. Matching these criteria, we identify “low‐hanging fruits” for the inclusion in ESMs, such as basic implementations of crop and forestry harvest and fertilization. We also identify research requirements for specific communities to address the remaining land management practices. Data availability severely hampers modeling the most extensive land management practice, grazing and mowing harvest, and is a limiting factor for a comprehensive implementation of most other practices. Inadequate process understanding hampers even a basic assessment of crop species selection and tillage effects. The need for multiple advanced model structures will be the challenge for a comprehensive implementation of most practices but considerable synergy can be gained using the same structures for different practices. A continuous and closer collaboration of the modeling, Earth observation, and land system science communities is thus required to achieve the inclusion of land management in ESMs
    corecore