714 research outputs found

    Ninja data analysis with a detection pipeline based on the Hilbert-Huang Transform

    Full text link
    The Ninja data analysis challenge allowed the study of the sensitivity of data analysis pipelines to binary black hole numerical relativity waveforms in simulated Gaussian noise at the design level of the LIGO observatory and the VIRGO observatory. We analyzed NINJA data with a pipeline based on the Hilbert Huang Transform, utilizing a detection stage and a characterization stage: detection is performed by triggering on excess instantaneous power, characterization is performed by displaying the kernel density enhanced (KD) time-frequency trace of the signal. Using the simulated data based on the two LIGO detectors, we were able to detect 77 signals out of 126 above SNR 5 in coincidence, with 43 missed events characterized by signal to noise ratio SNR less than 10. Characterization of the detected signals revealed the merger part of the waveform in high time and frequency resolution, free from time-frequency uncertainty. We estimated the timelag of the signals between the detectors based on the optimal overlap of the individual KD time-frequency maps, yielding estimates accurate within a fraction of a millisecond for half of the events. A coherent addition of the data sets according to the estimated timelag eventually was used in a characterization of the event.Comment: Accepted for publication in CQG, special issue NRDA proceedings 200

    Overview of the BlockNormal Event Trigger Generator

    Get PDF
    In the search for unmodeled gravitational wave bursts, there are a variety of methods that have been proposed to generate candidate events from time series data. Block Normal is a method of identifying candidate events by searching for places in the data stream where the characteristic statistics of the data change. These change-points divide the data into blocks in which the characteristics of the block are stationary. Blocks in which these characteristics are inconsistent with the long term characteristic statistics are marked as Event-Triggers which can then be investigated by a more computationally demanding multi-detector analysis.Comment: GWDAW-8 proceedings, 6 pages, 2 figure

    Superdeformation in 198^{198}Po

    Full text link
    The 174^{174}Yb(29^{29}Si,5n) reaction at 148 MeV with thin targets was used to populate high-angular momentum states in 198^{198}Po. Resulting γ\gamma rays were observed with Gammasphere. A weakly-populated superdeformed band of 10 γ\gamma-ray transitions was found and has been assigned to 198^{198}Po. This is the first observation of a SD band in the A190A \approx 190 region in a nucleus with Z>83Z > 83. The J(2){\cal J}^{(2)} of the new band is very similar to those of the yrast SD bands in 194^{194}Hg and 196^{196}Pb. The intensity profile suggests that this band is populated through states close to where the SD band crosses the yrast line and the angular momentum at which the fission process dominates.Comment: 10 pages, revtex, 2 figs. available on request, submitted to Phys. Rev. C. (Rapid Communications

    Spectroscopy of 194^{194}Po

    Get PDF
    Prompt, in-beam γ\gamma rays following the reaction 170^{170}Yb + 142 MeV 28^{28}Si were measured at the ATLAS facility using 10 Compton-suppressed Ge detectors and the Fragment Mass Analyzer. Transitions in 194^{194}Po were identified and placed using γ\gamma-ray singles and coincidence data gated on the mass of the evaporation residues. A level spectrum up to J\approx10\hbar was established. The structure of 194^{194}Po is more collective than that observed in the heavier polonium isotopes and indicates that the structure has started to evolve towards the more collective nature expected for deformed nuclei.Comment: 8 pages, revtex 3.0, 4 figs. available upon reques

    Improved Measurement of the Positive Muon Lifetime and Determination of the Fermi Constant

    Full text link
    The mean life of the positive muon has been measured to a precision of 11 ppm using a low-energy, pulsed muon beam stopped in a ferromagnetic target, which was surrounded by a scintillator detector array. The result, tau_mu = 2.197013(24) us, is in excellent agreement with the previous world average. The new world average tau_mu = 2.197019(21) us determines the Fermi constant G_F = 1.166371(6) x 10^-5 GeV^-2 (5 ppm). Additionally, the precision measurement of the positive muon lifetime is needed to determine the nucleon pseudoscalar coupling g_P.Comment: As published version (PRL, July 2007

    Measurement of eta photoproduction on the proton from threshold to 1500 MeV

    Full text link
    Beam asymmetry and differential cross section for the reaction gamma+p->eta+p were measured from production threshold to 1500 MeV photon laboratory energy. The two dominant neutral decay modes of the eta meson, eta->2g and eta->3pi0, were analyzed. The full set of measurements is in good agreement with previously published results. Our data were compared with three models. They all fit satisfactorily the results but their respective resonance contributions are quite different. The possible photoexcitation of a narrow state N(1670) was investigated and no evidence was found.Comment: 18 pages, 14 figures, 4 tables Submitted to EPJ

    Data Analysis Challenges for the Einstein Telescope

    Full text link
    The Einstein Telescope is a proposed third generation gravitational wave detector that will operate in the region of 1 Hz to a few kHz. As well as the inspiral of compact binaries composed of neutron stars or black holes, the lower frequency cut-off of the detector will open the window to a number of new sources. These will include the end stage of inspirals, plus merger and ringdown of intermediate mass black holes, where the masses of the component bodies are on the order of a few hundred solar masses. There is also the possibility of observing intermediate mass ratio inspirals, where a stellar mass compact object inspirals into a black hole which is a few hundred to a few thousand times more massive. In this article, we investigate some of the data analysis challenges for the Einstein Telescope such as the effects of increased source number, the need for more accurate waveform models and the some of the computational issues that a data analysis strategy might face.Comment: 18 pages, Invited review for Einstein Telescope special edition of GR

    Measurement of the Positive Muon Lifetime and Determination of the Fermi Constant to Part-per-Million Precision

    Get PDF
    We report a measurement of the positive muon lifetime to a precision of 1.0 parts per million (ppm); it is the most precise particle lifetime ever measured. The experiment used a time-structured, low-energy muon beam and a segmented plastic scintillator array to record more than 2 x 10^{12} decays. Two different stopping target configurations were employed in independent data-taking periods. The combined results give tau_{mu^+}(MuLan) = 2196980.3(2.2) ps, more than 15 times as precise as any previous experiment. The muon lifetime gives the most precise value for the Fermi constant: G_F(MuLan) = 1.1663788 (7) x 10^-5 GeV^-2 (0.6 ppm). It is also used to extract the mu^-p singlet capture rate, which determines the proton's weak induced pseudoscalar coupling g_P.Comment: Accepted for publication in Phys. Rev. Let

    Improved Measurement of the Positive Muon Anomalous Magnetic Moment

    Get PDF
    A new measurement of the positive muon's anomalous magnetic moment has been made at the Brookhaven Alternating Gradient Synchrotron using the direct injection of polarized muons into the superferric storage ring. The angular frequency difference omega_{a} between the angular spin precession frequency omega_{s} and the angular orbital frequency omega_{c} is measured as well as the free proton NMR frequency omega_{p}. These determine R = omega_{a} / omega_{p} = 3.707~201(19) times 10^{-3}. With mu_{mu} / mu_{p} = 3.183~345~39(10) this gives a_{mu^+} = 11~659~191(59) times 10^{-10} (pm 5 ppm), in good agreement with the previous CERN and BNL measurements for mu^+ and mu^-, and with the standard model prediction.Comment: 4 pages, 4 figures. accepted for publication in Phys. Rev. D62 Rapid Communication
    corecore