77 research outputs found

    Modular Synthesis of Sketches Using Models

    Get PDF
    One problem with the constraint-based approaches to synthesis that have become popular over the last few years is that they only scale to relatively small routines, on the order of a few dozen lines of code. This paper presents a mechanism for modular reasoning that allows us to break larger synthesis problems into small manageable pieces. The approach builds on previous work in the verification community of using high-level specifications and partially interpreted functions (we call them models) in place of more complex pieces of code in order to make the analysis modular. The main contribution of this paper is to show how to combine these techniques with the counterexample guided synthesis approaches used to efficiently solve synthesis problems. Specifically, we show two new algorithms; one to efficiently synthesize functions that use models, and another one to synthesize functions while ensuring that the behavior of the resulting function will be in the set of behaviors allowed by the model. We have implemented our approach on top of the open-source Sketch synthesis system, and we demonstrate its effectiveness on several Sketch benchmark problems.National Science Foundation (U.S.) (Grant NSF-1116362)National Science Foundation (U.S.) (Grant NSF-1139056)United States. Dept. of Energy (Grant DE-SC0005372

    An Assume-Guarantee Rule for Checking Simulation

    Full text link
    The simulation preorder on state transition systems is widely accepted as a useful notion of refinement, both in its own right and as an efficiently checkable sufficient condition for trace containment. For composite systems, due to the exponential explosion of the state space, there is a need for decomposing a simulation check of the form P �s Q, denoting “P is simulated by Q, ” into simpler simulation checks on the components of P and Q. We present an assume-guarantee rule that enables such a decomposition. To the best of our knowledge, this is the first assume-guarantee rule that applies to a refinement relation different from trace containment. Our rule is circular, and its soundness proof requires induction on trace trees. The proof is constructive: given simulation relations that witness the simulation preorder between corresponding components of P and Q, we provide a procedure for constructing a witness relation for P �s Q. We also extend our assume-guarantee rule to account for fairness constraints on transition systems

    Partial model checking with ROBDDs

    Full text link

    The Potts Fully Frustrated model: Thermodynamics, percolation and dynamics in 2 dimensions

    Get PDF
    We consider a Potts model diluted by fully frustrated Ising spins. The model corresponds to a fully frustrated Potts model with variables having an integer absolute value and a sign. This model presents precursor phenomena of a glass transition in the high-temperature region. We show that the onset of these phenomena can be related to a thermodynamic transition. Furthermore this transition can be mapped onto a percolation transition. We numerically study the phase diagram in 2 dimensions (2D) for this model with frustration and {\em without} disorder and we compare it to the phase diagram of i)i) the model with frustration {\em and} disorder and of ii)ii) the ferromagnetic model. Introducing a parameter that connects the three models, we generalize the exact expression of the ferromagnetic Potts transition temperature in 2D to the other cases. Finally, we estimate the dynamic critical exponents related to the Potts order parameter and to the energy.Comment: 10 pages, 10 figures, new result

    Star clusters near and far; tracing star formation across cosmic time

    Get PDF
    © 2020 Springer-Verlag. The final publication is available at Springer via https://doi.org/10.1007/s11214-020-00690-x.Star clusters are fundamental units of stellar feedback and unique tracers of their host galactic properties. In this review, we will first focus on their constituents, i.e.\ detailed insight into their stellar populations and their surrounding ionised, warm, neutral, and molecular gas. We, then, move beyond the Local Group to review star cluster populations at various evolutionary stages, and in diverse galactic environmental conditions accessible in the local Universe. At high redshift, where conditions for cluster formation and evolution are more extreme, we are only able to observe the integrated light of a handful of objects that we believe will become globular clusters. We therefore discuss how numerical and analytical methods, informed by the observed properties of cluster populations in the local Universe, are used to develop sophisticated simulations potentially capable of disentangling the genetic map of galaxy formation and assembly that is carried by globular cluster populations.Peer reviewedFinal Accepted Versio

    A MODEST review

    Get PDF
    We present an account of the state of the art in the fields explored by the research community invested in 'Modeling and Observing DEnse STellar systems'. For this purpose, we take as a basis the activities of the MODEST-17 conference, which was held at Charles University, Prague, in September 2017. Reviewed topics include recent advances in fundamental stellar dynamics, numerical methods for the solution of the gravitational N-body problem, formation and evolution of young and old star clusters and galactic nuclei, their elusive stellar populations, planetary systems, and exotic compact objects, with timely attention to black holes of different classes of mass and their role as sources of gravitational waves. Such a breadth of topics reflects the growing role played by collisional stellar dynamics in numerous areas of modern astrophysics. Indeed, in the next decade, many revolutionary instruments will enable the derivation of positions and velocities of individual stars in the Milky Way and its satellites and will detect signals from a range of astrophysical sources in different portions of the electromagnetic and gravitational spectrum, with an unprecedented sensitivity. On the one hand, this wealth of data will allow us to address a number of long-standing open questions in star cluster studies; on the other hand, many unexpected properties of these systems will come to light, stimulating further progress of our understanding of their formation and evolution.Comment: 42 pages; accepted for publication in 'Computational Astrophysics and Cosmology'. We are much grateful to the organisers of the MODEST-17 conference (Charles University, Prague, September 2017). We acknowledge the input provided by all MODEST-17 participants, and, more generally, by the members of the MODEST communit

    Love not the world

    No full text
    corecore