210 research outputs found
Direct-write, focused ion beam-deposited,7 K superconducting C-Ga-O nanowire
We have fabricated C-Ga-O nanowires by gallium focused ion beam-induced
deposition from the carbon-based precursor phenanthrene. The electrical
conductivity of the nanowires is weakly temperature dependent below 300 K, and
indicates a transition to a superconducting state below Tc = 7 K. We have
measured the temperature dependence of the upper critical field Hc2(T), and
estimate a zero temperature critical field of 8.8 T. The Tc of this material is
approximately 40% higher than that of any other direct write nanowire, such as
those based on C-W-Ga, expanding the possibility of fabricating direct-write
nanostructures that superconduct above liquid helium temperaturesComment: Accepted for AP
Do Travel Costs Matter For Persons With Lower Incomes? Using Psychological and Social Equity Perspectives to Evaluate the Effects of a Low-Income Transit Fare Program on Low-Income Riders
Objective: Access to transit can deliver a host of benefits to the riders and to the region. Previous research aiming to study these benefits has primarily relied on data collected from the opening of new routes or transit systems and focused on the general population. Little is known how low-income riders (LIR) react and benefit in response to when the cost barrier to access to transit is removed. With an intention to increase ridership while addressing the needs of transit-dependent riders in the region, TriMet (Portland, OR) expanded the Honored Citizens Program (HCP) in July 2018 to include low-income riders (LIR).
Methods: In pre-test, post-test design, TriMet riders took two self-reported surveys, the first after recently enrolling or renewing their enrollment in HCP to examine changes in behavior, such as their usage in modes of transportation, especially public transit; as well as changes in ill-being; access to schooling- and employment-related opportunities; and perceptions of TriMet as an organization. Riders of other status (i.e., Non-LIRs) served as a comparison group. The final sample with matching surveys was 98 LIR and 20 others, for a total of 118 riders over the age of 18. Twenty LIR were also interviewed for supplementary qualitative data. Descriptive statistics, mixed ANOVA, repeated measures and two-sample t-tests were conducted.
Results: There was evidence for an interaction between groups and timepoints for frequency of public transit use such that NonLIR demonstrated a significant decrease in use across timepoints but LIR did not. LIR reported higher levels of walking, carpooling or ridesharing, and psychological ill-being than the Non-LIR groups. Non-LIR reported higher levels of sense of community than LIR.
Conclusion: The impact of COVID-19 during the data collection stage interfered with this project’s capacity to detect meaningful changes of rider experiences over time. Despite this, LIR reported no significant changes (i.e., constant usage) in public transit use, suggesting a larger dependency than non-LIR. Findings suggested the HCP positively adds to riders’ lives in various ways including professional and recreational opportunities and physical and mental health, which is most apparent from qualitative interviews
Using an engineered glutamate-gated chloride channel to silence sensory neurons and treat neuropathic pain at the source
Peripheral neuropathic pain arises as a consequence of injury to sensory neurons; the development of ectopic activity in these neurons is thought to be critical for the induction and maintenance of such pain. Local anaesthetics and anti-epileptic drugs can suppress hyperexcitability; however, these drugs are complicated by unwanted effects on motor, central nervous system and cardiac function, and alternative more selective treatments to suppress hyperexcitability are therefore required. Here we show that a glutamate-gated chloride channel modified to be activated by low doses of ivermectin (but not glutamate) is highly effective in silencing sensory neurons and reversing neuropathic pain-related hypersensitivity. Activation of the glutamate-gated chloride channel expressed in either rodent or human induced pluripotent stem cell-derived sensory neurons in vitro potently inhibited their response to both electrical and algogenic stimuli. We have shown that silencing is achieved both at nerve terminals and the soma and is independent of membrane hyperpolarization and instead likely mediated by lowering of the membrane resistance. Using intrathecal adeno-associated virus serotype 9-based delivery, the glutamate-gated chloride channel was successfully targeted to mouse sensory neurons in vivo, resulting in high level and long-lasting expression of the channel selectively in sensory neurons. This enabled reproducible and reversible modulation of thermal and mechanical pain thresholds in vivo; analgesia was observed for 3 days after a single systemic dose of ivermectin. We did not observe any motor or proprioceptive deficits and noted no reduction in cutaneous afferent innervation or upregulation of the injury marker ATF3 following prolonged glutamate-gated chloride channel expression. Established mechanical and cold pain-related hypersensitivity generated by the spared nerve injury model of neuropathic pain was reversed by ivermectin treatment. The efficacy of ivermectin in ameliorating behavioural hypersensitivity was mirrored at the cellular level by a cessation of ectopic activity in sensory neurons. These findings demonstrate the importance of aberrant afferent input in the maintenance of neuropathic pain and the potential for targeted chemogenetic silencing as a new treatment modality in neuropathic pain
An interdisciplinary approach to enhance children’s listening, learning, and wellbeing in the classroom : The Listen to Learn for Life (L3) Assessment Framework
Introduction: Listening is the gateway to children learning in the mainstream classroom. However, modern classrooms are noisy and dynamic environments making listening challenging. It is therefore critical for researchers from speech and hearing, education, and health sciences to co-design and collaborate to realistically assess how children listen to learn in the classroom and to understand how listening can be improved to enhance children’s learning and wellbeing – an understanding which is currently lacking. Such highly interdisciplinary thinking demands a holistic classroom listening framework that can integrate a range of varied assessments and outcomes.
Methods: An extensive review of literature into classroom listening was conducted but failed to identify a suitable framework. In this hypothesis and theory article we present a new framework that we have developed – the Listen to Learn for Life (L3) Assessment Framework.
Results: The L3 Assessment Framework holistically incorporates frameworks from health, speech and hearing sciences, and education sectors. The framework accommodates a broad range of different factors that may affect listening, allowing for researchers to choose specific factors dependent on the context of use.
Discussion: Selected examples of applying the framework are provided demonstrating how to assess children’s performance during different classroom activities as well as the effectiveness of a chosen intervention. For example, the framework can be used to assess the effectiveness of a wireless remote microphone intervention during group work activities for a child with autism.
Conclusion: The L3 Assessment Framework provides a theoretical basis for the future development of research and practice as applied to listening in a classroom setting
Recommended from our members
High-resolution quantitative imaging of mammalian and bacterial cells using stable isotope mass spectrometry
Background: Secondary-ion mass spectrometry (SIMS) is an important tool for investigating isotopic composition in the chemical and materials sciences, but its use in biology has been limited by technical considerations. Multi-isotope imaging mass spectrometry (MIMS), which combines a new generation of SIMS instrument with sophisticated ion optics, labeling with stable isotopes, and quantitative image-analysis software, was developed to study biological materials. Results: The new instrument allows the production of mass images of high lateral resolution (down to 33 nm), as well as the counting or imaging of several isotopes simultaneously. As MIMS can distinguish between ions of very similar mass, such as ^{12}C^{15}N^{-} and ^{13}C^{14}N^{-}, it enables the precise and reproducible measurement of isotope ratios, and thus of the levels of enrichment in specific isotopic labels, within volumes of less than a cubic micrometer. The sensitivity of MIMS is at least 1,000 times that of ^{14}C autoradiography. The depth resolution can be smaller than 1 nm because only a few atomic layers are needed to create an atomic mass image. We illustrate the use of MIMS to image unlabeled mammalian cultured cells and tissue sections; to analyze fatty-acid transport in adipocyte lipid droplets using ^{13}C-oleic acid; to examine nitrogen fixation in bacteria using ^{15}N gaseous nitrogen; to measure levels of protein renewal in the cochlea and in post-ischemic kidney cells using ^{15}N-leucine; to study DNA and RNA co-distribution and uridine incorporation in the nucleolus using ^{15}N-uridine and ^{81}Br of bromodeoxyuridine or ^{14}C-thymidine; to reveal domains in cultured endothelial cells using the native isotopes ^{12}C, ^{16}O, ^{14}N and ^{31}P; and to track a few ^{15}N-labeled donor spleen cells in the lymph nodes of the host mouse. Conclusion: MIMS makes it possible for the first time to both image and quantify molecules labeled with stable or radioactive isotopes within subcellular compartments
Immune or genetic-mediated disruption of CASPR2 causes pain hypersensitivity due to enhanced primary afferent excitability
Human autoantibodies to contactin-associated protein-like 2 (CASPR2) are often associated with neuropathic pain, and CASPR2 mutations have been linked to autism spectrum disorders, in which sensory dysfunction is increasingly recognized. Human CASPR2 autoantibodies, when injected into mice, were peripherally restricted and resulted in mechanical pain-related hypersensitivity in the absence of neural injury. We therefore investigated the mechanism by which CASPR2 modulates nociceptive function. Mice lacking CASPR2 (Cntnap2 ) demonstrated enhanced pain-related hypersensitivity to noxious mechanical stimuli, heat, and algogens. Both primary afferent excitability and subsequent nociceptive transmission within the dorsal horn were increased in Cntnap2 mice. Either immune or genetic-mediated ablation of CASPR2 enhanced the excitability of DRG neurons in a cell-autonomous fashion through regulation of Kv1 channel expression at the soma membrane. This is the first example of passive transfer of an autoimmune peripheral neuropathic pain disorder and demonstrates that CASPR2 has a key role in regulating cell-intrinsic dorsal root ganglion (DRG) neuron excitability
The Allen Telescope Array Pi GHz Sky Survey I. Survey Description and Static Catalog Results for the Bootes Field
The Pi GHz Sky Survey (PiGSS) is a key project of the Allen Telescope Array.
PiGSS is a 3.1 GHz survey of radio continuum emission in the extragalactic sky
with an emphasis on synoptic observations that measure the static and
time-variable properties of the sky. During the 2.5-year campaign, PiGSS will
twice observe ~250,000 radio sources in the 10,000 deg^2 region of the sky with
b > 30 deg to an rms sensitivity of ~1 mJy. Additionally, sub-regions of the
sky will be observed multiple times to characterize variability on time scales
of days to years. We present here observations of a 10 deg^2 region in the
Bootes constellation overlapping the NOAO Deep Wide Field Survey field. The
PiGSS image was constructed from 75 daily observations distributed over a
4-month period and has an rms flux density between 200 and 250 microJy. This
represents a deeper image by a factor of 4 to 8 than we will achieve over the
entire 10,000 deg^2. We provide flux densities, source sizes, and spectral
indices for the 425 sources detected in the image. We identify ~100$ new flat
spectrum radio sources; we project that when completed PiGSS will identify 10^4
flat spectrum sources. We identify one source that is a possible transient
radio source. This survey provides new limits on faint radio transients and
variables with characteristic durations of months.Comment: Accepted for publication in ApJ; revision submitted with extraneous
figure remove
The Allen Telescope Array Twenty-centimeter Survey - A 690-Square-Degree, 12-Epoch Radio Dataset - I: Catalog and Long-Duration Transient Statistics
We present the Allen Telescope Array Twenty-centimeter Survey (ATATS), a
multi-epoch (12 visits), 690 square degree radio image and catalog at 1.4GHz.
The survey is designed to detect rare, very bright transients as well as to
verify the capabilities of the ATA to form large mosaics. The combined image
using data from all 12 ATATS epochs has RMS noise sigma = 3.94mJy / beam and
dynamic range 180, with a circular beam of 150 arcsec FWHM. It contains 4408
sources to a limiting sensitivity of S = 20 mJy / beam. We compare the catalog
generated from this 12-epoch combined image to the NRAO VLA Sky Survey (NVSS),
a legacy survey at the same frequency, and find that we can measure source
positions to better than ~20 arcsec. For sources above the ATATS completeness
limit, the median flux density is 97% of the median value for matched NVSS
sources, indicative of an accurate overall flux calibration. We examine the
effects of source confusion due to the effects of differing resolution between
ATATS and NVSS on our ability to compare flux densities. We detect no
transients at flux densities greater than 40 mJy in comparison with NVSS, and
place a 2-sigma upper limit on the transient rate for such sources of 0.004 per
square degree. These results suggest that the > 1 Jy transients reported by
Matsumura et al. (2009) may not be true transients, but rather variable sources
at their flux density threshold.Comment: 41 pages, 19 figures, ApJ accepted; corrected minor typo in Table
- …