147 research outputs found

    The Peculiar Motions of Early-Type Galaxies in Two Distant Regions -- VII. Peculiar Velocities and Bulk Motions

    Get PDF
    We present peculiar velocities for 85 clusters of galaxies in two large volumes at distances between 6000 and 15 000 km s−1 in the directions of Hercules-Corona Borealis and Perseus-Pisces-Cetus (the EFAR sample). These velocities are based on Fundamental Plane (FP) distance estimates for early-type galaxies in each cluster. We fit the FP using a maximum likelihood algorithm which accounts for both selection effects and measurement errors, and yields FP parameters with smaller bias and variance than other fitting procedures. We obtain a best-fitting FP with coefficients consistent with the best existing determinations. We measure the bulk motions of the sample volumes using the 50 clusters with the best-determined peculiar velocities. We find that the bulk motions in both regions are small, and consistent with zero at about the 5 per cent level. The EFAR results are in agreement with the small bulk motions found by Dale et al. on similar scales, but are inconsistent with pure dipole motions having the large amplitudes found by Lauer & Postman and Hudson et al. The alignment of the EFAR sample with the Lauer & Postman dipole produces a strong rejection of a large-amplitude bulk motion in that direction, but the rejection of the Hudson et al. result is less certain because their dipole lies at a large angle to the main axis of the EFAR sample. We employ a window function covariance analysis to make a detailed comparison of the EFAR peculiar velocities with the predictions of standard cosmological models. We find that the bulk motion of our sample is consistent with most cosmological models that approximately reproduce the shape and normalization of the observed galaxy power spectrum. We conclude that existing measurements of large-scale bulk motions provide no significant evidence against standard models for the formation of structure

    Mimesis stories: composing new nature music for the shakuhachi

    Get PDF
    Nature is a widespread theme in much new music for the shakuhachi (Japanese bamboo flute). This article explores the significance of such music within the contemporary shakuhachi scene, as the instrument travels internationally and so becomes rooted in landscapes outside Japan, taking on the voices of new creatures and natural phenomena. The article tells the stories of five compositions and one arrangement by non-Japanese composers, first to credit composers’ varied and personal responses to this common concern and, second, to discern broad, culturally syncretic traditions of nature mimesis and other, more abstract, ideas about the naturalness of sounds and creative processes (which I call musical naturalism). Setting these personal stories and longer histories side by side reveals that composition creates composers (as much as the other way around). Thus it hints at much broader terrain: the refashioning of human nature at the confluence between cosmopolitan cultural circulations and contemporary encounters with the more-than-human world

    The Peculiar Motions of Early‐Type Galaxies in Two Distant Regions. IV. The Photometric Fitting Procedure

    Get PDF
    The EFAR project is a study of 736 candidate early-type galaxies in 84 clusters lying in two regions toward Hercules-Corona Borealis and Perseus-Cetus at distances cz ≈ 6000-15,000 km s-1. In this paper we describe a new method of galaxy photometry adopted to derive the photometric parameters of the EFAR galaxies. The algorithm fits the circularized surface brightness profiles as the sum of two seeing-convolved components, an R1/4 and an exponential law. This approach allows us to fit the large variety of luminosity profiles displayed by the EFAR galaxies homogeneously and to derive (for at least a subset of these) bulge and disk parameters. Multiple exposures of the same objects are optimally combined and an optional sky-fitting procedure has been developed to correct for sky-subtraction errors. Extensive Monte Carlo simulations are analyzed to test the performance of the algorithm and estimate the size of random and systematic errors. Random errors are small, provided that the global signal-to-noise ratio of the fitted profiles is larger than ≈ 300. Systematic errors can result from (1) errors in the sky subtraction, (2) the limited radial extent of the fitted profiles, (3) the lack of resolution due to seeing convolution and pixel sampling, (4) the use of circularized profiles for very flattened objects seen edge-on, and (5) a poor match of the fitting functions to the object profiles. Large systematic errors are generated by the widely used simple R1/4 law to fit luminosity profiles when a disk component, as small as 20% of the total light, is present. The size of the systematic errors cannot be determined from the shape of the χ2 function near its minimum because extrapolation is involved. Rather, we must estimate them by a set of quality parameters, calibrated against our simulations, which take into account the amount of extrapolation involved to derive the total magnitudes, the size of the sky correction, the average surface brightness of the galaxy relative to the sky, the radial extent of the profile, its signal-to-noise ratio, the seeing value, and the reduced χ2 of the fit. We formulate a combined quality parameter Q, which indicates the expected precision of the fits. Errors in total magnitudes MTOT less than 0.05 mag and in half-luminosity radii Re less than 10% are expected if Q = 1, and less than 0.15 mag and 25% if Q = 2; 89% of the EFAR galaxies have fits with Q = 1 or Q = 2. The errors on the combined fundamental plane quantity FP = log Re-0.3SBe, where SBe is the average effective surface brightness, are smaller than 0.03 even if Q = 3. Thus, systematic errors on MTOT and Re only have a marginal effect on the distance estimates that involve FP. We show that the sequence of R1/n profiles, recently used to fit the luminosity profiles of elliptical galaxies, is equivalent (for n ≤ 8) to a subsample of R1/4 and exponential profiles, with appropriate scale lengths and disk-to-bulge ratios. This suggests that the variety of luminosity profiles shown by early-type galaxies may be due to the presence of a disk component

    Ungrading Across the Disciplines: Reflections of a Professional Learning Community

    Get PDF
    A group of interdisciplinary scholars formed a Professional Learning Community (PLC) in the spring 2020 semester. Their topic of consideration was “ungrading,” defined by the group as any pedagogical practice that moves a student’s focus away from grades and toward learning and growth. This essay provides an account of each instructor’s experience as a member of the PLC, highlighting both practical and theoretical considerations for instructors interested in incorporating ungrading in their courses. It also provides perspectives of students who experienced ungraded approaches first-hand

    The Peculiar Motions of Early-Type Galaxies in Two Distant Regions VI: The Maximum Likelihood Gaussian Algorithm

    Get PDF
    The EFAR project is designed to measure the properties and peculiar motions of early-type galaxies in two distant regions. Here we describe the maximum likelihood algorithm we developed to investigate the correlations between the parameters of the EFAR database. One-, two-, and three-dimensional gaussian models are constructed to determine the mean value and intrinsic spread of the parameters, and the slopes and intrinsic parallel and orthogonal spread of the Mgb'-Mg2, Mg2-sigma, Mgb'-sigma relations, and the Fundamental Plane. In the latter case, the cluster peculiar velocities are also determined. We show that this method is superior to ``canonical'' approaches of least-squares type, which give biased slopes and biased peculiar velocities. We test the algorithm with Monte Carlo simulations of mock EFAR catalogues and derive the systematic and random errors on the estimated parameters. We find that random errors are always dominant. We estimate the influence of systematic errors due to the way clusters were selected and the hard limits and uncertainties in the selection function parameters for the galaxies. We explore the influence of uniform distributions in the Fundamental Plane parameters and the errors. We conclude that the mean peculiar motions of the EFAR clusters can be determined reliably. In particular, the placement of the two EFAR sample regions relative to the Lauer and Postman dipole allows us to strongly constrain the amplitude of the bulk motion in this direction.Comment: 43 pages, 19 figures, accepted for publication in MNRA

    The peculiar motions of early-type galaxies in two distant regions - II. The spectroscopic data

    Get PDF
    We present the spectroscopic data for the galaxies studied in the EFAR project, which is designed to measure the properties and peculiar motions of early-type galaxies in two distant regions. We have obtained 1319 spectra of 714 early-type galaxies over 33 observing runs on 10 different telescopes. We describe the observations and data reductions used to measure redshifts, velocity dispersions and the Mgb and Mg2 Lick linestrength indices. Detailed simulations and intercomparison of the large number of repeat observations lead to reliable error estimates for all quantities. The measurements from different observing runs are calibrated to a common zeropoint or scale before being combined, yielding a total of 706 redshifts, 676 velocity dispersions, 676 Mgb linestrengths and 582 Mg2 linestrengths. The median estimated errors in the combined measurements are dcz=20 km/s, dsigma/sigma=9.1%, dMgb/Mgb=7.2% and dMg2=0.015 mag. Comparison of our measurements with published datasets shows no systematic errors in the redshifts or velocity dispersions and only small zeropoint corrections to bring our linestrengths onto the standard Lick system. We have assigned galaxies to physical clusters by examining the line-of-sight velocity distributions based on EFAR and ZCAT redshifts, together with the projected distributions on the sky. We derive mean redshifts and velocity dispersions for these clusters, which will be used in estimating distances and peculiar velocities and to test for trends in the galaxy population with cluster mass. The spectroscopic parameters presented here for 706 galaxies combine high quality data, uniform reduction and measurement procedures, and detailed error analysis. They form the largest single set of velocity dispersions and linestrengths for early-type galaxies published to date.Comment: 27 pages, 18 figures, accepted by MNRA

    Genetic Diversity of Near Genome-Wide Hepatitis C Virus Sequences during Chronic Infection: Evidence for Protein Structural Conservation Over Time

    Get PDF
    Infection with hepatitis C virus (HCV) is one of the leading causes of chronic hepatitis, liver cirrhosis and end-stage liver disease worldwide. The genetics of HCV infection in humans and the disease course of chronic hepatitis C are both remarkably variable. Although the response to interferon treatment is largely dependent on HCV genotypes, whether or not a relationship exists between HCV genome variability and clinical course of hepatitis C disease still remains unknown. To more thoroughly understand HCV genome evolution over time in association with disease course, near genome-wide HCV genomes present in 9 chronically infected participants over 83 total study years were sequenced. Overall, within HCV genomes, the number of synonymous substitutions per synonymous site (dS) significantly exceeded the number of non-synonymous substitutions per site (dN). Although both dS and dN significantly increased with duration of chronic infection, there was a highly significant decrease in dN/dS ratio in HCV genomes over time. These results indicate that purifying selection acted to conserve viral protein structure despite persistence of high level of nucleotide mutagenesis inherent to HCV replication. Based on liver biopsy fibrosis scores, HCV genomes from participants with advanced fibrosis had significantly greater dS values and lower dN/dS ratios compared to participants with mild liver disease. Over time, viral genomes from participants with mild disease had significantly greater annual changes in dN, along with higher dN/dS ratios, compared to participants with advanced fibrosis. Yearly amino acid variations in the HCV p7, NS2, NS3 and NS5B genes were all significantly lower in participants with severe versus mild disease, suggesting possible pathogenic importance of protein structural conservation for these viral gene products

    The peculiar motions of early-type galaxies in two distant regions -- VII. Peculiar velocities and bulk motions

    Get PDF
    We present peculiar velocities for 84 clusters of galaxies in two large volumes at distances between 6000 and 15000 km/s in the directions of Hercules-Corona Borealis and Perseus-Pisces-Cetus. These velocities are based on Fundamental Plane (FP) distance estimates for early-type galaxies in each cluster. We fit the FP using a maximum likelihood algorithm which accounts for both selection effects and measurement errors, and yields FP parameters with smaller bias and variance than other fitting procedures. We find a best-fit FP with coefficients consistent with the best existing determinations. We measure the bulk motions of the sample volumes using the 50 clusters with the best-determined peculiar velocities. We find the bulk motions in both regions are small, and consistent with zero at about the 5% level. The EFAR results are in agreement with the small bulk motions found by Dale et al. (1999) on similar scales, but are inconsistent with pure dipole motions having the large amplitudes found by Lauer & Postman (1994) and Hudson et al. (1999). The alignment of the EFAR sample with the Lauer & Postman dipole produces a strong rejection of a large-amplitude bulk motion in that direction, but the rejection of the Hudson et al. result is less certain because their dipole lies at a large angle to the main axis of the EFAR sample. We find the bulk motion of our sample is consistent with most cosmological models that approximately reproduce the shape and normalisation of the observed galaxy power spectrum. We conclude that existing measurements of large-scale bulk motions provide no significant evidence against standard models for the formation of structure

    The peculiar motions of early-type galaxies in two distant regions - VI. The maximum-likelihood Gaussian algorithm

    Get PDF
    The EFAR project is designed to measure the properties and peculiar motions of early-type galaxies in two distant regions. Here we describe the maximum-likelihood algorithm we developed to investigate the correlations between the parameters of the EFAR data base. One-, two- and three-dimensional Gaussian models are constructed to determine the mean value and intrinsic spread of the parameters, and the slopes and intrinsic parallel and orthogonal spread of th
    corecore