25 research outputs found

    Optogalvanic Spectroscopy of Metastable States in Yb^{+}

    Full text link
    The metastable ^{2}F_{7/2} and ^{2}D_{3/2} states of Yb^{+} are of interest for applications in metrology and quantum information and also act as dark states in laser cooling. These metastable states are commonly repumped to the ground state via the 638.6 nm ^{2}F_{7/2} -- ^{1}D[5/2]_{5/2} and 935.2 nm ^{2}D_{3/2} -- ^{3}D[3/2]_{1/2} transitions. We have performed optogalvanic spectroscopy of these transitions in Yb^{+} ions generated in a discharge. We measure the pressure broadening coefficient for the 638.6 nm transition to be 70 \pm 10 MHz mbar^{-1}. We place an upper bound of 375 MHz/nucleon on the 638.6 nm isotope splitting and show that our observations are consistent with theory for the hyperfine splitting. Our measurements of the 935.2 nm transition extend those made by Sugiyama et al, showing well-resolved isotope and hyperfine splitting. We obtain high signal to noise, sufficient for laser stabilisation applications.Comment: 8 pages, 5 figure

    Noise equalization for detection of microcalcification clusters in direct digital mammogram images.

    No full text
    Equalizing image noise is shown to be an important step in the automatic detection of microcalcifications in digital mammography. This study extends a well established film-screen noise equalization scheme developed by Veldkamp et al. for application to full-field digital mammogram (FFDM) images. A simple noise model is determined based on the assumption that quantum noise is dominant in direct digital X-ray imaging. Estimation of the noise as a function of the gray level is improved by calculating the noise statistics using a truncated distribution method. Experimental support for the quantum noise assumption is presented for a set of step wedge phantom images. Performance of the noise equalization technique is also tested as a preprocessing stage to a microcalcification detection scheme. It is shown that the square root model based approach which FFDM allows leads to a robust estimation of the high frequency image noise. This provides better microcalcification detection performance when compared to the film-screen noise equalization method developed by Veldkamp. Substantially better results are obtained than when noise equalization is omitted. A database of 124 direct digital mammogram images containing 28 microcalcification clusters was used for evaluation of the method

    Semi and non economic factors in the formation, relocation and transfer of manufacturing plants in the north west region of England 1972-1975

    No full text
    SIGLEAvailable from British Library Lending Division - LD:D54634/85 / BLDSC - British Library Document Supply CentreGBUnited Kingdo
    corecore