11,991 research outputs found

    Perceptions of sport science students on the potential applications and limitations of blended learning in their education: A qualitative study

    Get PDF
    This study sought to gain insight into blended learning-naive sports science students’ understanding and perceptions of the potential benefits and limitations of blended (hybrid) learning, which has been defined as the thoughtful integration of face-to-face and online instructional approaches. Five focus groups, each comprising 3–4 students from either the undergraduate or postgraduate sports science programmes were conducted. The focus groups were facilitated by a researcher who was not involved in sports science. Audio recordings of the focus groups were transcribed verbatim. NVivo software was used to code the transcripts to identify the themes and subthemes. Students generally had little initial understanding of blended learning. When provided with a definition, they believed that blended learning could improve educational outcomes and assist those who were legitimately unable to attend a session. Their reservations about blended learning mainly related to some students not being sufficiently autonomous to undertake independent study, timetabling considerations and access to reliable Internet services. For blended learning to be effective, students felt the online material had to be interactive, engaging and complement the face-to-face sessions. Better understanding the perceptions of the students in the current study may assist educators who are considering implementing blended learning in their teaching. © 2017 Informa UK Limited, trading as Taylor & Francis Grou

    Sonic boom characteristics of proposed supersonic and hypersonic airplanes

    Get PDF
    Sonic boom characteristics of proposed supersonic and hypersonic aircraf

    Systematic shifts in the balance of excitation and inhibition coordinate the activity of axial motor pools at different speeds of locomotion

    Get PDF
    An emerging consensus from studies of axial and limb networks is that different premotor populations are required for different speeds of locomotion. An important but unresolved issue is why this occurs. Here, we perform voltage-clamp recordings from axial motoneurons in larval zebrafish during “fictive” swimming to test the idea that systematic differences in the biophysical properties of axial motoneurons are associated with differential tuning in the weight and timing of synaptic drive, which would help explain premotor population shifts. We find that increases in swimming speed are accompanied by increases in excitation preferentially to lower input resistance (Rin) motoneurons, whereas inhibition uniformly increases with speed to all motoneurons regardless of Rin. Additionally, while the timing of rhythmic excitatory drive sharpens within the pool as speed increases, there are shifts in the dominant source of inhibition related to Rin. At slow speeds, anti-phase inhibition is larger throughout the pool. However, as swimming speeds up, inhibition arriving in-phase with local motor activity increases, particularly in higher Rin motoneurons. Thus, in addition to systematic differences in the weight and timing of excitation related to Rin and speed, there are also speed-dependent shifts in the balance of different sources of inhibition, which is most obvious in more excitable motor pools. We conclude that synaptic drive is differentially tuned to the biophysical properties of motoneurons and argue that differences in premotor circuits exist to simplify the coordination of activity within spinal motor pools during changes in locomotor speed

    Influence of pore-scale disorder on viscous fingering during drainage

    Get PDF
    We study viscous fingering during drainage experiments in linear Hele-Shaw cells filled with a random porous medium. The central zone of the cell is found to be statistically more occupied than the average, and to have a lateral width of 40% of the system width, irrespectively of the capillary number CaCa. A crossover length wfCa1w_f \propto Ca^{-1} separates lower scales where the invader's fractal dimension D1.83D\simeq1.83 is identical to capillary fingering, and larger scales where the dimension is found to be D1.53D\simeq1.53. The lateral width and the large scale dimension are lower than the results for Diffusion Limited Aggregation, but can be explained in terms of Dielectric Breakdown Model. Indeed, we show that when averaging over the quenched disorder in capillary thresholds, an effective law v(P)2v\propto (\nabla P)^2 relates the average interface growth rate and the local pressure gradient.Comment: 4 pages, 4 figures, submitted to Phys Rev Letter

    Using AI/expert system technology to automate planning and replanning for the HST servicing missions

    Get PDF
    This paper describes a knowledge-based system that has been developed to automate planning and scheduling for the Hubble Space Telescope (HST) Servicing Missions. This new system is the Servicing Mission Planning and Replanning Tool (SM/PART). SM/PART has been delivered to the HST Flight Operations Team (FOT) at Goddard Space Flight Center (GSFC) where it is being used to build integrated time lines and command plans to control the activities of the HST, Shuttle, Crew and ground systems for the next HST Servicing Mission. SM/PART reuses and extends AI/expert system technology from Interactive Experimenter Planning System (IEPS) systems to build or rebuild time lines and command plans more rapidly than was possible for previous missions where they were built manually. This capability provides an important safety factor for the HST, Shuttle and Crew in case unexpected events occur during the mission

    The Resonance in the B-P-a Reaction

    Get PDF
    The yield of alpha particles of range greater than 2 cms. from boron bombarded by protons has been studied as a function of bombarding energy in the range from 100 to 200 ekv, using a thin target, either methyl borate or boron trifluoride at pressures of 1 mm. of Hg. The yield vs. energy curve shows an approximately exponential rise on which is superposed a sharp (half breadth ~ 6 ekv) intense line at 150 ± ekv. There is some indication of a weaker and much broader line at 190 ekv. Number range curves are not yet available, but the appearance of pulses on the oscillograph screen leads us to suppose that the high yield (line) at 150 ekv is due to emission of a homogeneous long-range group

    Fluctuations in viscous fingering

    Full text link
    Our experiments on viscous (Saffman-Taylor) fingering in Hele-Shaw channels reveal finger width fluctuations that were not observed in previous experiments, which had lower aspect ratios and higher capillary numbers Ca. These fluctuations intermittently narrow the finger from its expected width. The magnitude of these fluctuations is described by a power law, Ca^{-0.64}, which holds for all aspect ratios studied up to the onset of tip instabilities. Further, for large aspect ratios, the mean finger width exhibits a maximum as Ca is decreased instead of the predicted monotonic increase.Comment: Revised introduction, smoothed transitions in paper body, and added a few additional minor results. (Figures unchanged.) 4 pages, 3 figures. Submitted to PRE Rapi

    Structural and chemical embrittlement of grain boundaries by impurities: a general theory and first principles calculations for copper

    Full text link
    First principles calculations of the Sigma 5 (310)[001] symmetric tilt grain boundary in Cu with Bi, Na, and Ag substitutional impurities provide evidence that in the phenomenon of Bi embrittlement of Cu grain boundaries electronic effects do not play a major role; on the contrary, the embrittlement is mostly a structural or "size" effect. Na is predicted to be nearly as good an embrittler as Bi, whereas Ag does not embrittle the boundary in agreement with experiment. While we reject the prevailing view that "electronic" effects (i.e., charge transfer) are responsible for embrittlement, we do not exclude the role of chemistry. However numerical results show a striking equivalence between the alkali metal Na and the semi metal Bi, small differences being accounted for by their contrasting "size" and "softness" (defined here). In order to separate structural and chemical effects unambiguously if not uniquely, we model the embrittlement process by taking the system of grain boundary and free surfaces through a sequence of precisely defined gedanken processes; each of these representing a putative mechanism. We thereby identify three mechanisms of embrittlement by substitutional impurities, two of which survive in the case of embrittlement or cohesion enhancement by interstitials. Two of the three are purely structural and the third contains both structural and chemical elements that by their very nature cannot be further unravelled. We are able to take the systems we study through each of these stages by explicit computer simulations and assess the contribution of each to the nett reduction in intergranular cohesion. The conclusion we reach is that embrittlement by both Bi and Na is almost exclusively structural in origin; that is, the embrittlement is a size effect.Comment: 13 pages, 5 figures; Accepted in Phys. Rev.

    FLITECAM: current status and results from observatory verification flights

    Get PDF
    This paper describes the current status of FLITECAM, the near-infrared (1 - 5 μm) camera and spectrometer for NASA’s Stratospheric Observatory for Infrared Astronomy (SOFIA). Due to a change in schedule FLITECAM’s delivery was advanced, allowing it to be co-mounted with the HIPO instrument and used on four flights in October 2011 for observatory verification. Although not part of FLITECAM’s commissioning time, some preliminary performance characteristics were determined. Image size as a function of wavelength was measured prior to the installation of active mass dampers on the telescope. Preliminary grism spectroscopy was also obtained. In addition, FLITECAM was used to measure the emissivity of the telescope and warm optics in the co-mounted configuration. New narrow band filters were added to the instrument, including a Paschen alpha filter for line emission. Results are illustrated
    corecore