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Abstract. – We study viscous fingering during drainage experiments in linear Hele-Shaw cells
filled with a random porous medium. The central zone of the cell is found to be statistically
more occupied than the average, and to have a lateral width of 40% of the system width,
irrespectively of the capillary number Ca. A crossover length wf ∝ Ca−1 separates lower
scales where the invader’s fractal dimension D ' 1.83 is identical to capillary fingering, and
larger scales where the dimension is found to be D ' 1.53. The lateral width and the large scale
dimension are lower than the results for Diffusion Limited Aggregation, but can be explained in
terms of Dielectric Breakdown Model. Indeed, we show that when averaging over the quenched
disorder in capillary thresholds, an effective law v ∝ (∇P )2 relates the average interface growth
rate and the local pressure gradient.

Viscous fingering instabilities in immiscible two-fluid flows in porous materials have been
intensely studied over the past 50 years [1], both because of their important role in oil recovery
processes, and as a paradigm of simple pattern forming system. Their dynamics is controlled
by the interplay between viscous, capillary and gravity forces. The ratio of viscous forces to
the capillary ones at pore scale is quantified by the capillary number Ca = µvf a2/(γκ), where
a is the characteristic pore size, vf is the filtration velocity, γ the interfacial tension, κ the
permeability of the cell, and µ the viscosity of the displaced fluid, supposed here much larger
than the viscosity of the invading one.

There is a strong analogy between viscous fingering in porous media and Diffusion Limited
Aggregation (DLA), as was first pointed out by Paterson [2]. Indeed, both processes of DLA
and viscous fingering in empty Hele-Shaw cells belong to the family of Laplacian Growth
Models, i.e. obey the Laplacian growth equation ∇2P = 0, with an interfacial growth rate
v ∝ −∇P , where P is the diffusing field, i.e. the probability density of random walkers in
DLA, or the pressure in viscous fingering. Despite differences as respectively a stochastic and
deterministic growth, and boundary conditions as respectively P = 0 or P = −γ/r with r the
interfacial curvature, it is admitted that these processes belong to the same universality class
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Fig. 1 – Invasion clusters on thresholded images at capillary numbers Ca = 0.06 (a) and 0.22 (b,c),
for W/a = 210 (a,b)and 110 (c), with displayed system lateral boundaries. The superimposed gray
map shows the occupancy probability π(x, z) of the invader, in a moving reference frame attached to
the most advanced invasion tip and to the lateral boundaries.

[2–4]. In radial geometry these processes lead to fractal structures of dimensions D = 1.70 ±
0.03 [5], 1.713 ± 0.0003 [6], and 1.7 [4] respectively in viscous fingering in empty Hele-Shaw
cells, DLA, and numerical solutions of deterministic Laplacian growth. The two numerical
models have been reexplored recently using stochastic conformal mapping theory [3, 4, 6].
However, in Hele-Shaw cells filled with disordered porous materials similar to the one used
here, a lower fractal dimension D = 1.58± 0.09 has been measured [7].

In straight channels, DLA gives rise to fractal structures of dimension 1.71, occupying
on average a lateral fraction λ = 0.62 of the system width W [8]. Viscous fingering in
empty Hele-Shaw cell converge towards the Saffman Taylor (ST) solution [9], with a uniformly
propagating fingerlike interface covering a fraction λ = 0.5 of the system width at large
capillary numbers [9, 10], selected by the interfacial tension [11].

For straight channels with a disordered porous medium, viscous fingering with a non-
wetting invader leads to a branched structure that depends on Ca , on the observation scale
and on the system size (Fig. 1). Løvoll et al [12] recently investigated the growth activity of the
invading fluid in such systems, and showed that up to statistical fluctuations, the characteristic
number of pores invaded at a given longitudinal distance behind the most advanced tip is
a stationary quantity (denoted n(z) in [12]). In this Letter, we extend the experimental
characterization of the probability occupancy function of the invader, and obtain a universal
invasion probability function π(x, z), which in reduced coordinates is independent of capillary
numbers and system sizes. This function represents the fraction of invaded pores in the
reference frame of the stationary process. To our knowledge, this is the first experimental
attempt to reach such a quantity, and represents a technical challenge due to the required high
number of experiments, and the need for the development of good automation techniques for
image data processing. We also characterize in details the fractal geometry of the invasion
structure, and its different regimes at different scales. In this Letter, we also provide a
theoretical argument which takes into account the influence of the disorder in the capillary
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Fig. 2 – Scaled invader’s density, after projections along directions parallel or perpendicular to the
average flux, as function of reduced coordinates scaled by the system width W . (a): Scaled density
n(z)/nCa as function of 2z/W , scaled longitudinal distance to the most advanced tip, for three system
sizes and four capillary numbers. The lines are the experimental averages, and the theoretical Saffman
Taylor solution for a single finger occupying a lateral fraction λ = 0.4 of the system. (b): Normalized
density as function of the scaled lateral coordinate, ρ(x), with half-maximum reached over a width
0.4W

thresholds along the invasion front, and we establish that if indeed at high capillary number,
the process is well described by DLA as often suggested [2], there is also at intermediate Ca
a regime where the flow in random porous media is better described by another Laplacian
model, namely a Dielectric Breakdown Model (DBM) with η = 2 – the interfacial growth rate
is v ∝ (∇P )η in DBM, η = 1 corresponding to DLA –. This theoretical argument leads to
estimates of the fractal dimensions of the invader, and of the lateral fraction λ characteristizing
the geometry of the invasion probability function, which are compatible with the experimental
results.

In the experiments, linear Hele-Shaw cells of thickness a = 1mm were filled at 38% with
a monolayer of randomly located immobile glass beads of diameter a, between which air
displaces a solution of 90% glycerol - 10% water of much larger viscosity µ = 0.165 Pa·s,
wetting the beads and walls of the cell, i.e. in drainage conditions (experimental technique
similar to [12]). The interfacial tension and the permeability of the cell are respectively
γ = 0.064 N·m−1 and κ = 0.00166 ± 0.00017 mm2. We investigate regimes ranging from
capillary to viscous fingering (0.01 < Ca < 0.5), in cells with impermeable lateral walls and
dimensions W × L × a, with widths perpendicularly to the flow direction W/a = 110, 215
and 430, and a length L/a = 840. The cell is set horizontally, so that gravity is irrelevant. A
constant filtration rate of water-glycerol is ensured by a controlled gravity-driven pump.

Pictures of the flow pattern are taken from the top, and treated to extract the invading air
cluster (with pixels of size 0.55a), as the black clusters in Fig. 1. In ref. [12], we have shown
that the invasion process is stationary, up to fluctuations arising from the disorder in pore
geometries. To extract the underlying average stationary behavior, all quantities are then
analyzed in the reference frame (x, z) attached to the lateral boundaries at x = 0 and x = W ,
and to the foremost propagating tip at z = 0, z pointing against the flow direction (this tip
indeed propagates at a roughly constant speed vtip [12]). Average quantities at any position
(x, z) of the tip related frame, are defined using all stages and points of the invasion process,
excluding regions closer than W/2 from the inlet or outlet, to avoid finite size effects.

The average occupancy map π(x, z) is defined as follows: for each time (or each picture), we
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Fig. 3 – (a) Average occupation density map of the invader thresholded at half-maximum, for a system
size W/a=215, in the reference frame attached to the tip position, at Ca = 0.06 (a) and 0.22 (b),
compared to ST curves for λ = 0.35 and 0.45.

assign the value 1 to the coordinate (x, z) if air is present there, 0 otherwise. π(x, z) obtained as
the time average of such occupancy function, is displayed as graymap in Fig. 1. This definition
would coincide, in the limit of large systems, with the mean occupancy introduced for DLA by
Arneodo et al. [8,13]. Next we compute the average number of occupied pores per unit length

at a distance z behind the tip, n(z), which is related to π as n(z) = (1/a2)
∫ W

0
π(x, z) dx.

We show in Fig. 2 (a), a data collapse for all experiments, at different capillary numbers Ca
and three system widths W , of n(z)/nCa = Φ(2z/W ), where nCa = (W/a2)vf /vtip [12]. The
underlying scaling function Φ is a function increasing from 0 at z = 0 towards 1 at z = +∞,
as granted by conservation of the displaced fluid for a statistically stationary process [12]. Φ
is evaluated in Fig. 2 (a) as an average over all experiments and sizes.

We also characterize the lateral structure of the invader in the frozen zone, z > W , where
less than 10% of the invasion activity takes place since Φ(2) > 0.9. We define over this zone a
distribution in reduced coordinates ρ(x) = [W/(a2 nCa)] π(x,∞) = (vtip/vf) π(x,∞), so that∫ W

0
ρ(x)dx/W ' 1. This quantity, presented in Fig. 2(b) for an average over five experiments

at capillary numbers Ca = 0.06 and 0.22 for W/a = 215, and for four experiments with
0.06 < Ca < 0.22 for W/a = 110, seems also reasonably independent of system size and
capillary number, as is n(z)/nCa – Fig. 2(a). We notice a certain dispersion around the
average, but no systematic trend over size or capillary number. An interesting geometrical
characteristic of this underlying lateral occupation density is the fraction λ of the system,
occupied by the invader at saturation, which is evaluated as in [8]: λ = 1/ρmax, or alternatively
λ = (x+ − x−)/W , where ρ(x+) = ρ(x−) = ρmax/2. Both definitions, for a regular function
ρ(x) determined by averaging over capillary numbers and sizes, lead to λ ' 0.4 ± 0.02 as
shown in Fig. 2(b): this is significantly smaller than the off-lattice DLA result λ = 0.62 [8,14].

The 2D occupancy map π(x, z) itself, displayed as graymap in Fig. 1, has a maximum
πmax = ρmaxvf/vtip, along a line at (x = W/2, z > W ). Similarly to Arneodo’s procedure [8],
we determine the support of π > πmax/2, displayed in Fig. 3(a) and (b), which corresponds
to the most often occupied region. Within the noise error, the shape of this region resembles
the theoretical ST curve corresponding to λ = 0.4 ± 0.05 [9] (gray lines in Fig. 3). For such
a theoretical ST finger, this curve would also coincide with another observable determined in
this study, namely the scaled longitudinal density of invader. As seen in Fig. 2(b), there are
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Fig. 4 – Small and large scale fractal dimension of the invasion cluster at various capillary numbers,
determined by box-counting. (a) insert: number of boxes as function of the scale. (b): Data collapse
for all capillary numbers after rescaling the box size by Ca: evidence of cross over scale wf ∼ Ca−1

separating a small scale capillary fractal dimension 1.83, and large viscous scale 1.53.

also similarities between the two processes for this other observable, i.e. between the scaled
longitudinal density Φ(z) determined for the fingering process in disordered media studied
here (continuous line), and this theoretical ST curve corresponding to λ = 0.4 (dashed line).
Systematic deviations from the mathematical ST solution at λ = 0.4 might nonetheless exist
for these two observables, accordingly to what has been seen between the DLA envelopes and
the corresponding ST solution at λ = 0.62 [14].

The mass fractal dimension of the invasion clusters is analyzed by box-counting. N(s) is
the number of boxes of size s to cover the invader. Fig. 4 displays a normalized distribution
N(s)/N(a/Ca) as function of (s/a) · Ca for various capillary numbers. By linear regression
of this collapsed log-log data, we find that N(s) ∼ s−1.83±0.01 for small scales s < a/Ca, and
N(s) ∼ s−1.53±0.02 for larger scales. The result can be explained by the following approxi-
mations. The distribution of pore throats sizes results in a distribution of capillary pressure
thresholds Pt, g(Pt), of characteristic width Wt. Consider a box of size wf along the cluster
boundary in the active zone, such that wf · ∇Pb = Wt where ∇Pb is a characteristic pressure
gradient. At scales s < wf , viscous pressure variations are lower than capillary threshold fluc-
tuations, and the most likely invaded pores correspond to the lowest random thresholds, which
corresponds to capillary fingering, thus leading to D = 1.83 (similarly to capillary fingering
experiments [15], or to invasion percolation model [16]). Conversely, at larger sizes (s > wf ),
the invasion activity is determined essentially by the spatial variations of ∇Pb. Assuming that
∇Pb scales as the imposed ∇P (−∞) ∝ Ca, i.e. neglecting the geometry variations between
different speeds, wf scales as Wt/∇Pb ∝ a/Ca, as confirmed by the data collapse in Fig. 4(a).
Such a scaling law, wf/a ∝ Ca−1 before saturating at large Ca, is also consistent with another
experimental determination of wf , illustrated in Fig. 9 of Ref. [12]

Eventually, we sketch a possible explanation for the width selection λ = 0.4 and the
large scale fractal dimension D = 1.53 ± 0.02, which are smaller than their counterparts in
DLA, respectively 0.62 and 1.71. Neglecting the small scale permeability variations leads to
a Laplacian pressure field in the defending fluid. The boundary condition for the pressure
field is then ∇P (z = −∞) = −µvf/κ, and ∇P (x = 0, W ) · x̂ = 0 where x̂ is the unit
vector along x. The dynamics of the process is then entirely controlled by the boundary
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condition along the invading fluid, i.e. by the capillary pressure drop across the meniscus in
the pore neck and the pressure gradient in the invaded fluid. For a given pressure difference
at pore scale between the invading air at P0, and the pressure P1 in the glycerol-filled pore,
we decompose P0 − P1 = ∆Pv + Pc, where ∆Pv is a viscous pressure drop in the pore neck,
and the capillary pressure drop is Pc = γ/r + 2γ/a, where the in- and out-of-plane curvature
of the interface are respectively r and a/2. As a meniscus progresses between neighboring
beads, its curvature goes through a minimum rm in the pore neck. The meniscus will be
able to pass the neck if the pressure drop P0 − P1 exceeds the threshold Pt = Pc(rm). For
the sake of simplicity, the probability distribution of the thresholds g(Pt) is considered flat,
between Pmin and Pmax, with Wt = Pmax −Pmin and g(Pt) = θ(Pt −Pmin)θ(Pmax −Pt)/Wt,
where θ is the Heaviside function. In the pure capillary fingering limit Ca → 0, the pressure
field P is homogeneous in the defending fluid, and a pore is invaded when P0 − P reaches
the minimum threshold along the boundary, close to Pmin. At higher capillary number, we
want to relate the invasion rate to the local capillary threshold, and to the pressure P1 in the
liquid-filled pore nearest to the interface. If P0 − P1 < Pt, the meniscus adjusts reversibly in
the pore neck, and the next pore is not invaded. Conversely, if P0 − P1 > Pt, the pore will
be invaded, and most of the invasion time is spent in the thinnest region of the pore neck. A
characteristic interface velocity can be evaluated by the Washburn equation [17] at this point:
v ∼ −(2κ/µa)(P0 −P1 −Pt)θ(P0 −P1 −Pt), where the heaviside function results from a zero
invasion velocity if the pore is not invaded. Hypothesizing that only the average growth rate
controls the process, independently of the particular realization of random thresholds, the
growth rate averaged over all possible pore neck configurations, is

< v >=

∫
−2κ

µa
(P0 − P1 − Pt)θ(P0 − P1 − Pt)g(Pt)dPt

= −(κ/µa)θ(P0 − P1 − Pmin) × (1)

{[(P0 − P1 − Pmin)2/Wt]θ[Pmax − (P0 − P1)] +

2[P0 − P1 − (Pmin + Pmax)/2]θ[P0 − P1 − Pmax]}.

At moderate capillary numbers, such as P0 − P1 < Pmax, if we assume that the capillary
pressure drop is around Pc = Pmin when the invasion meniscus is at the entrance of the pore
neck, we note that (P0−Pmin−P1)/a = ∆Pv/a ∼ ∇P/2, and Eq. (1) implies that the growth
rate goes as < v >= −aκ/(4µWt)(∇P )2. This effective quadratic relationship between the
average growth rate and the local pressure gradient arises from the distribution of capillary
thresholds, and means that such invasion process should be in the universality class of DBM
with η = 2, rather than DLA (DBM, η = 1). Indeed, in DBM simulations in linear channels,
λ is a decreasing function of η (as in related deterministic problems, as viscous fingering in
shear-thinning fluids [18], or η-model [19]), and Somfai et al. [14] report λ ' 0.62 and 0.5 for
respectively η = 1 and 1.5, so that the observed λ = 0.4 is consistent with η = 2. The fractal
dimension of DBM is also a decreasing function of η, and η = 2 corresponds D = 1.4±0.1 [20],
which is close to the observed D = 1.53± 0.02 in our experiments.

Note that at high capillary numbers such that locally P0 − P1 � Pmax, the threshold
fluctuations are not felt by the interface, and Eq. (1) leads to < vinv >= −(κ/µ)∇P , which
would correspond to a classic DLA process. We have checked by numerically solving the
Laplace equation with the experimental clusters as boundaries that all experiments performed
here were at moderate enough capillary number to have P0−P1 < Pmax all along the boundary
[12], i.e. the quadratic law < v >= −aκ/(4µWt)(∇P )2 is expected to hold.

Even at moderate Ca, deviations from the DBM model with η = 2 could be observed for
significantly non-flat distribution of the capillary thresholds in the random porous medium,
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for which Eq.(1) would lead to a more complicated dependence of the growth rate v on ∇P ,
reflecting the details of this distribution, and not simply a power-law effective relationship.
It would be interesting in future work to explore numerically and experimentally the detailed
effect of non-flat capillary threshold distributions on the selected fractal dimension, average
width occupied in the system, and total displaced mass nCa(Ca) (reported in [12] for the
present work), to extract the influence of the disorder on the best capillary number to select
in order to maximize the efficiency of the extraction process.

We acknowledge with pleasure fruitful discussions with E. G. Flekkøy, A. Lindner, A.
Hansen and E. Somfai, and support from the PICS program granted by NFR and CNRS.
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