192 research outputs found
Evaluation of a multifaceted "Resident-as-Teacher" educational intervention to improve morning report
BACKGROUND: Resident-led morning report is an integral part of most residency programs and is ranked among the most valuable of educational experiences. The objectives of this study were to evaluate the effect of a resident-as-teacher educational intervention on the educational and teaching experience of morning report. METHODS: All senior internal medicine residents were invited to participate in this study as teaching participants. All internal medicine residents and clerks were invited to participate as audience participants. The educational intervention included reading material, a small group session and feedback after teaching sessions. The educational and teaching experiences were rated prior to and three months after the intervention using questionnaires. RESULTS: Forty-six audience participants and 18 teaching participants completed the questionnaires. The degree to which morning report met the educational needs of the audience was higher after the educational intervention (effect size, d = 0.26, p = 0.01). The perceptions of the audience were that delivery had improved and that the sessions were less intimidating and more interactive. The perception of the teaching participants was that delivery was less stressful, but this group now reported greater difficulty in engaging the audience and less confidence in their medical knowledge. CONCLUSION: Following the educational intervention the audience's perception was that the educational experience had improved although there were mixed results for the teaching experience. When evaluating such interventions it is important to evaluate the impact on both the educational and teaching experiences as results may differ
Aerobic capacity, activity levels and daily energy expenditure in male and female adolescents of the kenyan nandi sub-group
The relative importance of genetic and socio-cultural influences contributing to the success of east Africans in endurance athletics remains unknown in part because the pre-training phenotype of this population remains incompletely assessed. Here cardiopulmonary fitness, physical activity levels, distance travelled to school and daily energy expenditure in 15 habitually active male (13.9Β±1.6 years) and 15 habitually active female (13.9Β±1.2) adolescents from a rural Nandi primary school are assessed. Aerobic capacity ([Formula: see text]) was evaluated during two maximal discontinuous incremental exercise tests; physical activity using accelerometry combined with a global positioning system; and energy expenditure using the doubly labelled water method. The [Formula: see text] of the male and female adolescents were 73.9Β±5.7 ml(.) kg(-1.) min(-1) and 61.5Β±6.3 ml(.) kg(-1.) min(-1), respectively. Total time spent in sedentary, light, moderate and vigorous physical activities per day was 406Β±63 min (50% of total monitored time), 244Β±56 min (30%), 75Β±18 min (9%) and 82Β±30 min (10%). Average total daily distance travelled to and from school was 7.5Β±3.0 km (0.8-13.4 km). Mean daily energy expenditure, activity-induced energy expenditure and physical activity level was 12.2Β±3.4 MJ(.) day(-1), 5.4Β±3.0 MJ(.) day(-1) and 2.2Β±0.6. 70.6% of the variation in [Formula: see text] was explained by sex (partial R(2)β=β54.7%) and body mass index (partial R(2)β=β15.9%). Energy expenditure and physical activity variables did not predict variation in [Formula: see text] once sex had been accounted for. The highly active and energy-demanding lifestyle of rural Kenyan adolescents may account for their exceptional aerobic fitness and collectively prime them for later training and athletic success
Sustainability of the whole-community project '10,000 Steps': a longitudinal study
<p>Abstract</p> <p>Background</p> <p>In the dissemination and implementation literature, there is a dearth of information on the sustainability of community-wide physical activity (PA) programs in general and of the '10,000 Steps' project in particular. This paper reports a longitudinal evaluation of organizational and individual sustainability indicators of '10,000 Steps'.</p> <p>Methods</p> <p>Among project adopters, department heads of 24 public services were surveyed 1.5 years after initially reported project implementation to assess continuation, institutionalization, sustained implementation of intervention components, and adaptations. Barriers and facilitators of project sustainability were explored. Citizens (<it>n </it>= 483) living near the adopting organizations were interviewed to measure maintenance of PA differences between citizens aware and unaware of '10,000 Steps'. Independent-samples <it>t</it>, Mann-Whitney <it>U</it>, and chi-square tests were used to compare organizations for representativeness and individual PA differences.</p> <p>Results</p> <p>Of all organizations, 50% continued '10,000 Steps' (mostly in cycles) and continuation was independent of organizational characteristics. Level of intervention institutionalization was low to moderate on evaluations of routinization and moderate for project saturation. The global implementation score (58%) remained stable and three of nine project components were continued by less than half of organizations (posters, street signs and variants, personalized contact). Considerable independent adaptations of the project were reported (e.g. campaign image). Citizens aware of '10,000 Steps' remained more active during leisure time than those unaware (227 Β± 235 and 176 Β± 198 min/week, respectively; <it>t </it>= -2.6; p < .05), and reported more household-related (464 Β± 397 and 389 Β± 346 min/week, respectively; <it>t </it>= -2.2; p < .05) and moderate-intensity-PA (664 Β± 424 and 586 Β± 408 min/week, respectively; <it>t </it>= -2.0; p < .05). Facilitators of project sustainability included an organizational leader supporting the project, availability of funding or external support, and ready-for-use materials with ample room for adaptation. Barriers included insufficient synchronization between regional and community policy levels and preference for other PA projects.</p> <p>Conclusions</p> <p>'10,000 Steps' could remain sustainable but design, organizational, and contextual barriers need consideration. Sustainability of '10,000 Steps' in organizations can occur in cycles rather than in ongoing projects. Future research should compare sustainability other whole-community PA projects with '10,000 Steps' to contrast sustainability of alternative models of whole-community PA projects. This would allow optimization of project elements and methods to support decisions of choice for practitioners.</p
Expression of the Axonal Membrane Glycoprotein M6a Is Regulated by Chronic Stress
It has been repeatedly shown that chronic stress changes dendrites, spines and modulates expression of synaptic molecules. These effects all may impair information transfer between neurons. The present study shows that chronic stress also regulates expression of M6a, a glycoprotein which is localised in axonal membranes. We have previously demonstrated that M6a is a component of glutamatergic axons. The present data reveal that it is the splice variant M6a-Ib, not M6a-Ia, which is strongly expressed in the brain. Chronic stress in male rats (3 weeks daily restraint) has regional effects: quantitative in situ hybridization demonstrated that M6a-Ib mRNA in dentate gyrus granule neurons and in CA3 pyramidal neurons is downregulated, whereas M6a-Ib mRNA in the medial prefrontal cortex is upregulated by chronic stress. This is the first study showing that expression of an axonal membrane molecule is differentially affected by stress in a region-dependent manner. Therefore, one may speculate that diminished expression of the glycoprotein in the hippocampus leads to altered output in the corresponding cortical projection areas. Enhanced M6a-Ib expression in the medial prefrontal cortex (in areas prelimbic and infralimbic cortex) might be interpreted as a compensatory mechanism in response to changes in axonal projections from the hippocampus. Our findings provide evidence that in addition to alterations in dendrites and spines chronic stress also changes the integrity of axons and may thus impair information transfer even between distant brain regions
Brain architecture in the terrestrial hermit crab Coenobita clypeatus (Anomura, Coenobitidae), a crustacean with a good aerial sense of smell
<p>Abstract</p> <p>Background</p> <p>During the evolutionary radiation of Crustacea, several lineages in this taxon convergently succeeded in meeting the physiological challenges connected to establishing a fully terrestrial life style. These physiological adaptations include the need for sensory organs of terrestrial species to function in air rather than in water. Previous behavioral and neuroethological studies have provided solid evidence that the land hermit crabs (Coenobitidae, Anomura) are a group of crustaceans that have evolved a good sense of aerial olfaction during the conquest of land. We wanted to study the central olfactory processing areas in the brains of these organisms and to that end analyzed the brain of <it>Coenobita clypeatus </it>(Herbst, 1791; Anomura, Coenobitidae), a fully terrestrial tropical hermit crab, by immunohistochemistry against synaptic proteins, serotonin, FMRFamide-related peptides, and glutamine synthetase.</p> <p>Results</p> <p>The primary olfactory centers in this species dominate the brain and are composed of many elongate olfactory glomeruli. The secondary olfactory centers that receive an input from olfactory projection neurons are almost equally large as the olfactory lobes and are organized into parallel neuropil lamellae. The architecture of the optic neuropils and those areas associated with antenna two suggest that <it>C. clypeatus </it>has visual and mechanosensory skills that are comparable to those of marine Crustacea.</p> <p>Conclusion</p> <p>In parallel to previous behavioral findings of a good sense of aerial olfaction in C. clypeatus, our results indicate that in fact their central olfactory pathway is most prominent, indicating that olfaction is a major sensory modality that these brains process. Interestingly, the secondary olfactory neuropils of insects, the mushroom bodies, also display a layered structure (vertical and medial lobes), superficially similar to the lamellae in the secondary olfactory centers of <it>C. clypeatus</it>. More detailed analyses with additional markers will be necessary to explore the question if these similarities have evolved convergently with the establishment of superb aerial olfactory abilities or if this design goes back to a shared principle in the common ancestor of Crustacea and Hexapoda.</p
Probing Molecular Mechanisms of the Hsp90 Chaperone: Biophysical Modeling Identifies Key Regulators of Functional Dynamics
Deciphering functional mechanisms of the Hsp90 chaperone machinery is an important objective in cancer biology aiming to facilitate discovery of targeted anti-cancer therapies. Despite significant advances in understanding structure and function of molecular chaperones, organizing molecular principles that control the relationship between conformational diversity and functional mechanisms of the Hsp90 activity lack a sufficient quantitative characterization. We combined molecular dynamics simulations, principal component analysis, the energy landscape model and structure-functional analysis of Hsp90 regulatory interactions to systematically investigate functional dynamics of the molecular chaperone. This approach has identified a network of conserved regions common to the Hsp90 chaperones that could play a universal role in coordinating functional dynamics, principal collective motions and allosteric signaling of Hsp90. We have found that these functional motifs may be utilized by the molecular chaperone machinery to act collectively as central regulators of Hsp90 dynamics and activity, including the inter-domain communications, control of ATP hydrolysis, and protein client binding. These findings have provided support to a long-standing assertion that allosteric regulation and catalysis may have emerged via common evolutionary routes. The interaction networks regulating functional motions of Hsp90 may be determined by the inherent structural architecture of the molecular chaperone. At the same time, the thermodynamics-based βconformational selectionβ of functional states is likely to be activated based on the nature of the binding partner. This mechanistic model of Hsp90 dynamics and function is consistent with the notion that allosteric networks orchestrating cooperative protein motions can be formed by evolutionary conserved and sparsely connected residue clusters. Hence, allosteric signaling through a small network of distantly connected residue clusters may be a rather general functional requirement encoded across molecular chaperones. The obtained insights may be useful in guiding discovery of allosteric Hsp90 inhibitors targeting protein interfaces with co-chaperones and protein binding clients
- β¦