214 research outputs found
Formal Verification of Nonlinear Inequalities with Taylor Interval Approximations
We present a formal tool for verification of multivariate nonlinear
inequalities. Our verification method is based on interval arithmetic with
Taylor approximations. Our tool is implemented in the HOL Light proof assistant
and it is capable to verify multivariate nonlinear polynomial and
non-polynomial inequalities on rectangular domains. One of the main features of
our work is an efficient implementation of the verification procedure which can
prove non-trivial high-dimensional inequalities in several seconds. We
developed the verification tool as a part of the Flyspeck project (a formal
proof of the Kepler conjecture). The Flyspeck project includes about 1000
nonlinear inequalities. We successfully tested our method on more than 100
Flyspeck inequalities and estimated that the formal verification procedure is
about 3000 times slower than an informal verification method implemented in
C++. We also describe future work and prospective optimizations for our method.Comment: 15 page
Extrapolating SMBH correlations down the mass scale: the case for IMBHs in globular clusters
Empirical evidence for both stellar mass black holes M_bh<10^2 M_sun) and
supermassive black holes (SMBHs, M_bh>10^5 M_sun) is well established.
Moreover, every galaxy with a bulge appears to host a SMBH, whose mass is
correlated with the bulge mass, and even more strongly with the central stellar
velocity dispersion sigma_c, the `M-sigma' relation. On the other hand,
evidence for "intermediate-mass" black holes (IMBHs, with masses in the range
1^2 - 10^5 M_sun) is relatively sparse, with only a few mass measurements
reported in globular clusters (GCs), dwarf galaxies and low-mass AGNs. We
explore the question of whether globular clusters extend the M-sigma
relationship for galaxies to lower black hole masses and find that available
data for globular clusters are consistent with the extrapolation of this
relationship. We use this extrapolated M-sigma relationship to predict the
putative black hole masses of those globular clusters where existence of
central IMBH was proposed. We discuss how globular clusters can be used as a
constraint on theories making specific predictions for the low-mass end of the
M-sigma relation.Comment: 14 pages, 3 figures, accepted for publication in Astrophysics and
Space Science; fixed typos and a quote in Sec.
Photon interferometry and size of the hot zone in relativistic heavy ion collisions
The parameters obtained from the theoretical analysis of the single photon
spectra observed by the WA98 collaboration at SPS energies have been used to
evaluate the two photon correlation functions. The single photon spectra and
the two photon correlations at RHIC energies have also been evaluated, taking
into account the effects of the possible spectral change of hadrons in a
thermal bath. We find that the ratio for SPS and
for RHIC energy.Comment: text changed, figures adde
Combined Decision Techniques for the Existential Theory of the Reals
Methods for deciding quantifier-free non-linear arithmetical conjectures over *** are crucial in the formal verification of many real-world systems and in formalised mathematics. While non-linear (rational function) arithmetic over *** is decidable, it is fundamentally infeasible: any general decision method for this problem is worst-case exponential in the dimension (number of variables) of the formula being analysed. This is unfortunate, as many practical applications of real algebraic decision methods require reasoning about high-dimensional conjectures. Despite their inherent infeasibility, a number of different decision methods have been developed, most of which have "sweet spots" --- e.g., types of problems for which they perform much better than they do in general. Such "sweet spots" can in many cases be heuristically combined to solve problems that are out of reach of the individual decision methods when used in isolation. RAHD ("Real Algebra in High Dimensions") is a theorem prover that works to combine a collection of real algebraic decision methods in ways that exploit their respective "sweet-spots." We discuss high-level mathematical and design aspects of RAHD and illustrate its use on a number of examples
X-Ray and Radio Observations of Bright GeV Sources
We present X-ray and radio studies of sources which are brightabove 1 GeV
(F_{>1GeV} > 4e-8 ph/cm^2/s. Only 11 out of ~30 of these gamma-ray sources have
been identified with lower energy counterparts: 5 blazars and 6 pulsars. Three
of these pulsars are surrounded by radio pulsar wind nebulae (PWN), two of
which are also seen as bright, extended X-ray synchrotron nebulae. The ASCA
X-ray telescope has observed 28 of the bright GeV sources, revealing an excess
of F_{2-10keV} > 10e-12 ergs/cm^2/s sources within the {\it EGRET} error
contours of the unidentified sources. Although several supernova remnants are
positionally coincident with these sources, we find no X-ray evidence of high
energy particle production in SNR shell shocks consistent with the GeV
positions. We also present initial results from follow on radio imaging studies
of several fields containing unidentified sources. We have discovered new
X-ray/radio nebulae in three of these fields which are strong candidates for
PWN. These sources, along with a similar nebula in CTA 1 and the PWN around PSR
B1853+01 in W44, are all positionally coincident with variable EGRET sources.
This suggests a class of variable gamma-ray sources associated with synchrotron
emitting regions powered by the winds of young pulsars.Comment: 18 pages, 26 figures, To appear in the proceedings of the workshop:
"The Nature of the Unidentified Galactic Gamma-Ray Sources" held at INAOE,
Mexico, October 2000, (A.Carraminana, O. Reiner and D. Thompson,
Imaging Observations of Quasi-Periodic Pulsatory Non-Thermal Emission in Ribbon Solar Flares
Using RHESSI and some auxiliary observations we examine possible connections
between spatial and temporal morphology of the sources of non-thermal hard
X-ray (HXR) emission which revealed minute quasi-periodic pulsations (QPPs)
during the two-ribbon flares on 2003 May 29 and 2005 January 19. Microwave
emission also reveals the same quasi-periodicity. The sources of non-thermal
HXR emission are situated mainly inside the footpoints of the flare arcade
loops observed by the TRACE and SOHO instruments. At least one of the sources
moves systematically both during the QPP-phase and after it in each flare that
allows to examine the sources velocities and the energy release rate via the
process of magnetic reconnection. The sources move predominantly parallel to
the magnetic inversion line or the appropriate flare ribbon during the
QPP-phase whereas the movement slightly changes to more perpendicular regime
after the QPPs. Each QPP is emitted from its own position. It is also seen that
the velocity and the energy release rate don't correlate well with the flux of
the HXR emission calculated from the sources. The sources of microwaves and
thermal HXRs are situated near the apex of the loop arcade and are not
stationary either. Almost all QPPs and some spikes of HXR emission during the
post-QPP-phase reveal the soft-hard-soft spectral behavior indicating separate
acts of electrons acceleration and injection, rather than modulation of
emission flux by some kinds of magnetohydrodynamic (MHD) oscillations of
coronal loops. In all likelihood, the flare scenarios based on the successively
firing arcade loops are more preferable to interpret the observations, although
we can not conclude exactly what mechanism forces these loops to flare up.Comment: 22 pages, 10 figure
Globular cluster luminosity function as distance indicator
Globular clusters are among the first objects used to establish the distance
scale of the Universe. In the 1970-ies it has been recognized that the
differential magnitude distribution of old globular clusters is very similar in
different galaxies presenting a peak at M_V ~ -7.5. This peak magnitude of the
so-called Globular Cluster Luminosity Function has been then established as a
secondary distance indicator. The intrinsic accuracy of the method has been
estimated to be of the order of ~0.2 mag, competitive with other distance
determination methods. Lately the study of the Globular Cluster Systems has
been used more as a tool for galaxy formation and evolution, and less so for
distance determinations. Nevertheless, the collection of homogeneous and large
datasets with the ACS on board HST presented new insights on the usefulness of
the Globular Cluster Luminosity Function as distance indicator. I discuss here
recent results based on observational and theoretical studies, which show that
this distance indicator depends on complex physics of the cluster formation and
dynamical evolution, and thus can have dependencies on Hubble type, environment
and dynamical history of the host galaxy. While the corrections are often
relatively small, they can amount to important systematic differences that make
the Globular Cluster Luminosity Function a less accurate distance indicator
with respect to some other standard candles.Comment: Accepted for publication in Astrophysics and Space Science. Review
paper based on the invited talk at the conference "The Fundamental Cosmic
Distance Scale: State of the Art and Gaia Perspective", Naples, May 2011. (13
pages, 8 figures
A workshop on âDietary SweetnessâIs It an Issue?â
This report summarises a workshop convened by ILSI Europe on 3 and 4 April 2017 to discuss the issue of dietary sweetness. The objectives were to understand the roles of sweetness in the diet, establish whether exposure to sweetness affects diet quality and energy intake, and consider whether sweetness per se affects health. Although there may be evidence for tracking of intake of some sweet components of the diet through childhood, evidence for tracking of whole diet sweetness, or through other stages of maturity are lacking. The evidence to date does not support adverse effects of sweetness on diet quality or energy intake, except where sweet food choices increase intake of free sugars. There is some evidence for improvements in diet quality and reduced energy intake where sweetness without calories replaces sweetness with calories. There is a need to understand the physiological and metabolic relevance of sweet taste receptors on the tongue, in the gut and elsewhere in the body, as well as possible differentiation in the effects of sustained consumption of individual sweeteners. Despite a plethora of studies, there is no consistent evidence for an association of sweetness sensitivity/preference with obesity or type 2 diabetes. A multifaceted integrated approach, characterising nutritive and sensory aspects of the whole diet or dietary patterns, may be more valuable in providing contextual insight. The outcomes of the workshop could be used as a scientific basis to inform the expert community and create more useful dialogue among health care professionals
- âŠ