1,208 research outputs found

    Computer predictions of photochemical oxidant levels for initial precursor concentrations characteristic of southeastern Virginia

    Get PDF
    A computer study was performed with a photochemical box model, using a contemporary chemical mechanism and procedure, and a range of initial input pollutant concentrations thought to encompass those characteristic of the Southeastern Virginia region before a photochemical oxidant episode. The model predictions are consistent with the expectation of high summer afternoon ozone levels when initial nonmethane hydrocarbon (NMHC) levels are in the range 0.30-0.40 ppmC and NOx levels are in the range 0.02-0.05 ppm. Calculations made with a Lagrangian model, for one of the previously calculated cases, which had produced intermediate afternoon ozone levels, suggest that urban source additions of NMHC and NOx exacerbate the photochemical oxidant condition

    Chemical kinetic modeling of propane oxidation behind shock waves

    Get PDF
    The stoichiometric combustion of propane behind incident shock waves was studied experimentally and analytically over a temperature range from 1700 K to 2600 K and a pressure range from 1.2 to 1.9 atm. Measurements of the concentrations of carbon monoxide (CO) and carbon dioxide (CO2) and the product of the oxygen atom and carbon dioxide concentrations (O)(CO) were made after passage of the incident shock wave. A kinetic mechanism was developed which, when used in a computer program for a flowing, reacting gas behind an incident shock wave predicted experimentally measured results quite well. Ignition delay times from the literature were also predicted quite well. The kinetic mechanism consisted of 59 individual kinetic steps

    Polynomial coefficients of thermochemical data for the C-H-O-N system

    Get PDF
    Thermodynamic data are required input for the finite kinetics and equilibrium computer programs needed for modeling the combustion of hydrocarbons in the fields of energy and pollution research. Least squares determined coefficients of the curve-fitted thermodynamic data for 193 species in the C-H-O-N system are presented in card image form and are of suitable format for use by common computer programs

    A Chemical Kinetic Mechanism for the Ignition of Silane/Hydrogen Mixtures

    Get PDF
    A chemical kinetic reaction mechanism for the oxidation of silane/hydrogen mixtures is presented and discussed. Shock-tube ignition delay time data were used to evaluate and refine the mechanism. Good agreement between experimental results and the results predicted by the mechanism was obtained by adjusting the rate coefficient for the reaction SiH3 + O2 yields SiH2O + OH. The reaction mechanism was used to theoretically investigate the ignition characteristics of silane/hydrogen mixtures. The results revealed that over the entire range of temperature examined (800 K to 1200 K), substantial reduction in ignition delay times is obtained when silane is added to hydrogen

    A hybrid computer program for rapidly solving flowing or static chemical kinetic problems involving many chemical species

    Get PDF
    A hybrid chemical kinetic computer program was assembled which provides a rapid solution to problems involving flowing or static, chemically reacting, gas mixtures. The computer program uses existing subroutines for problem setup, initialization, and preliminary calculations and incorporates a stiff ordinary differential equation solution technique. A number of check cases were recomputed with the hybrid program and the results were almost identical to those previously obtained. The computational time saving was demonstrated with a propane-oxygen-argon shock tube combustion problem involving 31 chemical species and 64 reactions. Information is presented to enable potential users to prepare an input data deck for the calculation of a problem

    Taphonomy of a Lance Formation(Maastrichtian, WY) Dinosaur Bonebed with a Focus on Tooth Traces

    Get PDF
    The Rose Quarry bonebed found in the Maastrichtian Lance Formation of eastern Wyoming possesses a complex blendof taphonomic signatures. Disarticulated, disassociated, fragmented bones of various states of abrasion from dinosaurs, turtles, and crocodilians are clustered together in a channelized sandstone unit. The mismatched taphonomic signatures of the bonebed suggest that it is amixed assemblage, containing bones with different taphonomic histories that were washed together by a flood event. Sedimentological data,includingthe presence of large mud clasts in the bonebed,agree well with this hypothesis. The abundant breakage of the bones in the Rose Quarry bonebed is attributed mainly to trampling. This study highlights the striking variability possible in fluvial bonebeds, including differences in pre-burial history, depositional mechanism, subenvironment, and post-burial history. Although only a few Rose Quarry bones show evidence of tooth traces, a similar nearby bonebed contained a tyrannosaurid metatarsal (HRS13997)that possessed numerous scores on the posterolateral surface near its ventral end. The presence of a Knethichnus parallelum tooth trace, the first known on a tyrannosaurid bone, allows for us to measure the widths of the striations left by the tooth denticles scraping along the bone’s surface. Comparison with theropod teeth from the Lance Formation leads us to concludeit was bitten by another tyrannosaurid, suggesting possible cannibalism in the species Tyrannosaurus rex

    Ignition of mixtures of SiH sub 4, CH sub 4, O sub 2, and Ar or N sub 2 behind reflected shock waves

    Get PDF
    Ignition delay times in mixtures of methane, silane, and oxygen diluted with argon and nitrogen were measured behind reflected shock waves generated in the chemical kinetic shock tube at Langley Research Center. The delay times were inferred from the rapid increase in pressure that occurs at ignition, and the ignition of methane was verified from the emission of infrared radiation from carbon dioxide. Pressures of 1.25 atm and temperatures from 1100 K to 1300 K were generated behind the reflected shocks; these levels are representative of those occurring within a supersonic Ramjet combustor. Expressions for the ignition delay time as a function of temperature were obtained from least squares curve fits to the data for overall equivalence ratios of 0.7 and 1.0. The ignition delay times with argon as the diluent were longer than those with nitrogen as the diluent. The infrared wavelength observations at 4.38 microns for carbon dioxide indicated that silane and methane ignited simultaneously (i.e., within the time resolution of the measurement). A combined chemical kinetic mechanism for mixtures of silane, methane, oxygen, and argon or nitrogen was assembled from one mechanism that accurately predicted the ignition of methane and a second mechanism that accurately predicted silane hydrogen ignition. Comparisons between this combined mechanism and experiment indicated that additional reactions, possibly between silyl and methyl fragments, are needed to develop a good silane methane mechanism

    Chemical kinetic modeling of benzene and toluene oxidation behind shock waves

    Get PDF
    The oxidation of stoichiometric mixtures of benzene and toluene behind incident shock waves was studied for a temperature range from 1700 to 2800 K and a pressure range from 1.1 to 1.7 atm. The concentration of CO and CO2 produced were measured as well as the product of the oxygen atom and carbon monoxide concentrations. Comparisons between the benzene experimental data and results calculated by use of a reaction mechanism published in the open literature were carried out. With some additional reactions and changes in rate constants to reflect the pressure-temperature range of the experimental data, a good agreement was achieved between computed and experimental results. A reaction mechanism was developed for toluene oxidation based on analogous rate steps from the benzene mechanism. Measurements of NOx levels in an actual flame device, a jet-stirred combustor, were reproduced successfully by use of the reaction mechanism developed from the shock-tube experiments on toluene. These experimental measurements of NOx levels were reproduced from a computer simulation of a jet-stirred combustor

    Nonequilibrium quantum dynamics of partial symmetry breaking for ultracold bosons in an optical lattice ring trap

    Full text link
    A vortex in a Bose-Einstein condensate on a ring undergoes quantum dynamics in response to a quantum quench in terms of partial symmetry breaking from a uniform lattice to a biperiodic one. Neither the current, a macroscopic measure, nor fidelity, a microscopic measure, exhibit critical behavior. Instead, the symmetry memory succeeds in identifying the point at which the system begins to forget its initial symmetry state. We further identify a symmetry energy difference in the low lying excited states which trends with the symmetry memory
    corecore