4,970 research outputs found

    Avionics architecture studies for the entry research vehicle

    Get PDF
    This report is the culmination of a year-long investigation of the avionics architecture for NASA's Entry Research Vehicle (ERV). The Entry Research Vehicle is conceived to be an unmanned, autonomous spacecraft to be deployed from the Shuttle. It will perform various aerodynamic and propulsive maneuvers in orbit and land at Edwards AFB after a 5 to 10 hour mission. The design and analysis of the vehicle's avionics architecture are detailed here. The architecture consists of a central triply redundant ultra-reliable fault tolerant processor attached to three replicated and distributed MIL-STD-1553 buses for input and output. The reliability analysis is detailed here. The architecture was found to be sufficiently reliable for the ERV mission plan

    Disk-Jet Coupling in Black Hole Accretion Systems I: General Relativistic Magnetohydrodynamical Models

    Full text link
    General relativistic numerical simulations of magnetized accretion flows around black holes show a disordered electromagnetic structure in the disk and corona and a highly relativistic, Poynting-dominated funnel jet in the polar regions. The polar jet is nearly consistent with the stationary paraboloidal Blandford-Znajek model of an organized field threading the polar regions of a rotating black hole. How can a disordered accretion disk and corona lead to an ordered jet? We show that the polar jet is associated with a strikingly simple angular-integrated toroidal current distribution dIϕ/dr∝r−5/4dI_\phi/dr \propto r^{-5/4}, where Iϕ(r)I_\phi(r) is the toroidal current enclosed inside radius rr. We demonstrate that the poloidal magnetic field in the simulated jet agrees well with the force-free field solution for a non-rotating thin disk with an r−5/4r^{-5/4} toroidal current, suggesting rotation leads to negligible self-collimation. We find that the polar field is confined/collimated by the corona. The electromagnetic field in the disk also scales as r−5/4r^{-5/4}, which is consistent with some Newtonian accretion models that assume rough equipartition between magnetic and gas pressure. However, the agreement is accidental since toward the black hole the magnetic pressure increases faster than the gas pressure. This field dominance near the black hole is associated with magnetic stresses that imply a large effective viscosity parameter α∌1\alpha\sim 1, whereas the typically assumed value of α∌0.1\alpha\sim 0.1 holds far from the black hole.[abridged]Comment: 20 pages, 12 figures, accepted to MNRA

    Stem cells and fluid flow drive cyst formation in an invertebrate excretory organ.

    No full text
    Cystic kidney diseases (CKDs) affect millions of people worldwide. The defining pathological features are fluid-filled cysts developing from nephric tubules due to defective flow sensing, cell proliferation and differentiation. The underlying molecular mechanisms, however, remain poorly understood, and the derived excretory systems of established invertebrate models (Caenorhabditis elegans and Drosophila melanogaster) are unsuitable to model CKDs. Systematic structure/function comparisons revealed that the combination of ultrafiltration and flow-associated filtrate modification that is central to CKD etiology is remarkably conserved between the planarian excretory system and the vertebrate nephron. Consistently, both RNA-mediated genetic interference (RNAi) of planarian orthologues of human CKD genes and inhibition of tubule flow led to tubular cystogenesis that share many features with vertebrate CKDs, suggesting deep mechanistic conservation. Our results demonstrate a common evolutionary origin of animal excretory systems and establish planarians as a novel and experimentally accessible invertebrate model for the study of human kidney pathologies

    A Note on the Slim Accretion Disk Model

    Full text link
    We show that when the gravitational force is correctly calculated in dealing with the vertical hydrostatic equilibrium of black hole accretion disks, the relationship that is valid for geometrically thin disks, i.e., cs/ΩKH=c_s/\Omega_K H = constant, where csc_s is the sound speed, ΩK\Omega_K is the Keplerian angular velocity, and HH is the half-thickness of the disk, does not hold for slim disks. More importantly, by adopting the correct vertical gravitational force in studies of thermal equilibrium solutions, we find that there exists a maximally possible accretion rate for each radius in the outer region of optically thick accretion flows, so that only the inner region of these flows can possibly take the form of slim disks, and strong outflows from the outer region are required to reduce the accretion rate in order for slim disks to be realized.Comment: 14 pages, 5 figures, accepted by Ap

    A PC parallel port button box provides millisecond response time accuracy under Linux

    Get PDF
    For psychologists, it is sometimes necessary to measure people's reaction times to the nearest millisecond. This article describes how to use the PC parallel port to receive signals from a button box to achieve millisecond response time accuracy. The workings of the parallel port, the corresponding port addresses, and a simple Linux program for controlling the port are described. A test of the speed and reliability of button box signal detection is reported. If the reader is moderately familiar with Linux, this article should provide sufficient instruction for him or her to build and test his or her own parallel port button box. This article also describes how the parallel port could be used to control an external apparatus
    • 

    corecore