4,113 research outputs found

    Stem cells and fluid flow drive cyst formation in an invertebrate excretory organ.

    No full text
    Cystic kidney diseases (CKDs) affect millions of people worldwide. The defining pathological features are fluid-filled cysts developing from nephric tubules due to defective flow sensing, cell proliferation and differentiation. The underlying molecular mechanisms, however, remain poorly understood, and the derived excretory systems of established invertebrate models (Caenorhabditis elegans and Drosophila melanogaster) are unsuitable to model CKDs. Systematic structure/function comparisons revealed that the combination of ultrafiltration and flow-associated filtrate modification that is central to CKD etiology is remarkably conserved between the planarian excretory system and the vertebrate nephron. Consistently, both RNA-mediated genetic interference (RNAi) of planarian orthologues of human CKD genes and inhibition of tubule flow led to tubular cystogenesis that share many features with vertebrate CKDs, suggesting deep mechanistic conservation. Our results demonstrate a common evolutionary origin of animal excretory systems and establish planarians as a novel and experimentally accessible invertebrate model for the study of human kidney pathologies

    Neutral Gas Properties and Lyα\alpha Escape in Extreme Green Pea Galaxies

    Get PDF
    Mechanisms regulating the escape of Lyα\alpha photons and ionizing radiation remain poorly understood. To study these processes we analyze VLA 21cm observations of one Green Pea (GP), J160810+352809 (hereafter J1608), and HST COS spectra of 17 GP galaxies at z<0.2z<0.2. All are highly ionized: J1608 has the highest [O III] λ5007\lambda5007/[O II] λ3727\lambda3727 for star-forming galaxies in SDSS, and the 17 GPs have [O III]/[O II] 6.6\geq6.6. We set an upper limit on J1608's HI mass of logMHI/M=8.4\log M_{HI}/M_\odot=8.4, near or below average compared to similar mass dwarf galaxies. In the COS sample, eight GPs show Lyα\alpha absorption components, six of which also have Lyα\alpha emission. The HI column densities derived from Lyα\alpha absorption are high, logNHI/\log N_{HI}/cm2=1921^{-2}=19-21, well above the LyC optically thick limit. Using low-ionization absorption lines, we measure covering fractions (f_{\mbox{cov}}) of 0.110.1-1, and find that f_{\mbox{cov}} strongly anti-correlates with Lyα\alpha escape fraction. Low covering fractions may facilitate Lyα\alpha and LyC escape through dense neutral regions. GPs with f_{\mbox{cov}}\sim1 all have low neutral gas velocities, while GPs with lower f_{\mbox{cov}}=0.2-0.6 have a larger range of velocities. Conventional mechanical feedback may help establish low f_{\mbox{cov}} in some cases, whereas other processes may be important for GPs with low velocities. Finally, we compare f_{\mbox{cov}} with proposed indicators of LyC escape. Ionizing photon escape likely depends on a combination of neutral gas geometry and kinematics, complicating the use of emission-line diagnostics for identifying LyC emitters.Comment: 21 pages, 11 figures, accepted for publication in Ap

    Hot Accretion With Conduction: Spontaneous Thermal Outflows

    Get PDF
    Motivated by the low-collisionality of gas accreted onto black holes in Sgr A* and other nearby galactic nuclei, we study a family of 2D advective accretion solutions with thermal conduction. While we only impose global inflow, the accretion flow spontaneously develops bipolar outflows. The role of conduction is key in providing the extra degree of freedom (latitudinal energy transport) necessary to launch these rotating thermal outflows. The sign of the Bernoulli constant does not discriminate between inflowing and outflowing regions. Our parameter survey covers mass outflow rates from ~ 0 to 13% of the net inflow rate, outflow velocities from ~0 to 11% of the local Keplerian velocity and outflow opening angles from ~ 0 to 60 degs. As the magnitude of conduction is increased, outflows can adopt a conical geometry, pure inflow solutions emerge, and the limit of 2D non-rotating Bondi-like solutions is eventually reached. These results confirm that radiatively-inefficient, hot accretion flows have a hydrodynamical propensity to generate bipolar thermal outflows.Comment: 38 pages, 10 figures, accepted for publication in Ap

    Accretion of low angular momentum material onto black holes: 2D magnetohydrodynamical case

    Full text link
    We report on the second phase of our study of slightly rotating accretion flows onto black holes. We consider magnetohydrodynamical (MHD) accretion flows with a spherically symmetric density distribution at the outer boundary, but with spherical symmetry broken by the introduction of a small, latitude-dependent angular momentum and a weak radial magnetic field. We study accretion flows by means of numerical 2D, axisymmetric, MHD simulations with and without resistive heating. Our main result is that the properties of the accretion flow depend mostly on an equatorial accretion torus which is made of the material that has too much angular momentum to be accreted directly. The torus accretes, however, because of the transport of angular momentum due to the magnetorotational instability (MRI). Initially, accretion is dominated by the polar funnel, as in the hydrodynamic inviscid case, where material has zero or very low angular momentum. At the later phase of the evolution, the torus thickens towards the poles and develops a corona or an outflow or both. Consequently, the mass accretion through the funnel is stopped. The accretion of rotating gas through the torus is significantly reduced compared to the accretion of non-rotating gas (i.e., the Bondi rate). It is also much smaller than the accretion rate in the inviscid, weakly rotating case.Our results do not change if we switch on or off resistive heating. Overall our simulations are very similar to those presented by Stone, Pringle, Hawley and Balbus despite different initial and outer boundary conditions. Thus, we confirm that MRI is very robust and controls the nature of radiatively inefficient accretion flows.Comment: submitted in Ap

    Inferring hidden Markov models from noisy time sequences: a method to alleviate degeneracy in molecular dynamics

    Get PDF
    We present a new method for inferring hidden Markov models from noisy time sequences without the necessity of assuming a model architecture, thus allowing for the detection of degenerate states. This is based on the statistical prediction techniques developed by Crutchfield et al., and generates so called causal state models, equivalent to hidden Markov models. This method is applicable to any continuous data which clusters around discrete values and exhibits multiple transitions between these values such as tethered particle motion data or Fluorescence Resonance Energy Transfer (FRET) spectra. The algorithms developed have been shown to perform well on simulated data, demonstrating the ability to recover the model used to generate the data under high noise, sparse data conditions and the ability to infer the existence of degenerate states. They have also been applied to new experimental FRET data of Holliday Junction dynamics, extracting the expected two state model and providing values for the transition rates in good agreement with previous results and with results obtained using existing maximum likelihood based methods.Comment: 19 pages, 9 figure

    Improvements in Mass Spectrometers for the Measurement of Small Differences in Isotope Abundance Ratios

    Get PDF
    A Nier-type mass spectrometer and its associated electronic units have been constructed for the purpose of measuring small variations in the abundances of oxygen of mass 18 and of carbon of mass 13 in carbon dioxide, and of oxygen of mass 18 in oxygen gas, to an accuracy of ±0.01 percent of the abundance of these isotopes.The electronic units of the necessary stability for this degree of accuracy are described. A gas feed system is described which permits fast alternate introduction of the sample of gas to be analyzed and a standard gas into the mass spectrometer. All measurements of the variation in the abundance of the oxygen and carbon isotopes are made with reference to a standard

    The influence of inhaled multi-walled carbon nanotubes on the autonomic nervous system

    Get PDF
    Background: Heart rate and cardiovascular function are regulated by the autonomic nervous system. Heart rate variability (HRV) as a marker reflects the activity of autonomic nervous system. The prognostic significance of HRV in cardiovascular disease has been reported in clinical and epidemiological studies. The present study focused on the influence of inhaled multi-walled carbon nanotubes (MWCNTs) on autonomic nervous system by HRV analysis. Methods: Male Sprague–Dawley rats were pre-implanted with a telemetry device and kept in the individual cages for recovery. At week four after device implantation, rats were exposed to MWCNTs for 5 h at a concentration of 5 mg/m3 . The real-time EKGs were recorded by a telemetry system at pre-exposure, during exposure, 1 day and 7 days post-exposure. HRV was measured by root mean square of successive differences (RMSSD); the standard deviation of inter-beat (RR) interval (SDNN); the percentage of successive RR interval differences greater than 5 ms (pNN5) and 10 ms (pNN10); low frequency (LF) and high frequency (HF). Results: Exposure to MWCNTs increased the percentage of differences between adjacent R-R intervals over 10 ms (pNN10) (p \u3c 0.01), RMSSD (p \u3c 0.01), LF (p \u3c 0.05) and HF (p \u3c 0.01). Conclusions: Inhalation of MWCNTs significantly alters the balance between sympathetic and parasympathetic nervous system. Whether such transient alterations in autonomic nervous performance would alter cardiovascular function and raise the risk of cardiovascular events in people with pre-existing cardiovascular conditions warrants further study

    Numerical Models of Viscous Accretion Flows Near Black Holes

    Get PDF
    We report on a numerical study of viscous fluid accretion onto a black hole. The flow is axisymmetric and uses a pseudo-Newtonian potential to model relativistic effects near the event horizon. The numerical method is a variant of the ZEUS code. As a test of our numerical scheme, we are able to reproduce results from earlier, similar work by Igumenshchev and Abramowicz and Stone et al. We consider models in which mass is injected onto the grid as well as models in which an initial equilibrium torus is accreted. In each model we measure three ``eigenvalues'' of the flow: the accretion rate of mass, angular momentum, and energy. We find that the eigenvalues are sensitive to r_{in}, the location of the inner radial boundary. Only when the flow is always supersonic on the inner boundary are the eigenvalues insensitive to small changes in r_{in}. We also report on the sensitivity of the results to other numerical parameters.Comment: 14 pages, 4 figures, 2 tables, to appear in v573 n2 pt1 ApJ July 10, 200
    corecore