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NEUTRAL GAS PROPERTIES AND LYα ESCAPE IN EXTREME GREEN PEA GALAXIES∗

Jed H. McKinney,1 Anne E. Jaskot,1, † M. S. Oey,2 Min S. Yun,1 Tara Dowd,1, 3 and James D. Lowenthal4

1Department of Astronomy, University of Massachusetts, Amherst, MA 01003, USA.
2Department of Astronomy, University of Michigan, Ann Arbor, MI 48109, USA.
3The Chandra X-Ray Center, Cambridge, MA 02138, USA
4Department of Astronomy, Smith College, Northampton, MA 01063, USA

ABSTRACT

Mechanisms regulating the escape of Lyα photons and ionizing radiation remain poorly understood. To study these

processes we analyze VLA 21cm observations of one Green Pea (GP), J160810+352809 (hereafter J1608), and HST

COS spectra of 17 GP galaxies at z < 0.2. All are highly ionized: J1608 has the highest [O III] λ5007/[O II] λ3727 for

star-forming galaxies in SDSS, and the 17 GPs have [O III]/[O II] ≥ 6.6. We set an upper limit on J1608’s HI mass

of logMHI/M� = 8.4, near or below average compared to similar mass dwarf galaxies. In the COS sample, eight GPs

show Lyα absorption components, six of which also have Lyα emission. The HI column densities derived from Lyα

absorption are high, logNHI/cm−2 = 19−21, well above the LyC optically thick limit. Using low-ionization absorption

lines, we measure covering fractions (fcov) of 0.1−1, and find that fcov strongly anti-correlates with Lyα escape fraction.

Low covering fractions may facilitate Lyα and LyC escape through dense neutral regions. GPs with fcov ∼ 1 all have

low neutral gas velocities, while GPs with lower fcov = 0.2 − 0.6 have a larger range of velocities. Conventional

mechanical feedback may help establish low fcov in some cases, whereas other processes may be important for GPs

with low velocities. Finally, we compare fcov with proposed indicators of LyC escape. Ionizing photon escape likely

depends on a combination of neutral gas geometry and kinematics, complicating the use of emission-line diagnostics

for identifying LyC emitters.

Keywords: (cosmology:) dark ages, galaxies: dwarf, galaxies: evolution, galaxies: ISM, galaxies:

starburst, galaxies: star clusters.

jhmckinney@umass.edu

∗ Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which
is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are
associated with programs GO-14080.
† Hubble Fellow
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1. INTRODUCTION

Determining the mechanisms responsible for reioniz-

ing the Universe at z ∼ 7 − 10 remains an open ques-

tion in observational cosmology. Active galactic nuclei

(AGN) and massive stars can emit significant Lyman-

continuum radiation (LyC, λ < 912 Å), but ionizing

photon escape fractions from these sources into the in-

tergalactic medium (IGM) are uncertain. High redshift

quasar number counts indicate an established AGN pop-

ulation at the beginning of the epoch of re-ionization,

but their ability to reproduce the LyC background is

still debated (e.g. Fontanot et al. 2012, 2014; Giallongo

et al. 2015; Madau & Haardt 2015). Cosmic reioniza-

tion may instead be dominated by star-forming galaxies

(SFGs) at z > 6 (e.g. Robertson et al. 2015). However,

this scenario is complicated by large HI column densi-

ties around star-forming regions which prevent ionizing

radiation escape into the IGM, despite high LyC photon

fluxes from young, massive stars. Overcoming the neu-

tral gas barrier may require either an ionized interstellar

medium (ISM) or one perforated by optically thin chan-

nels. Both scenarios are plausible in low and interme-

diate mass galaxies (e.g. Jaskot & Oey 2013; Nakajima

& Ouchi 2014; Rivera-Thorsen et al. 2015; Izotov et al.

2018b).

High-redshift observations of LyC-leaking SFGs are

complicated by the effects of IGM attenuation and con-

tamination by low-redshift galaxies (e.g. Vanzella et al.

2012; Siana et al. 2015). As a result, low-redshift stud-

ies of LyC emitters (LCEs) are necessary for inferring

the physical mechanisms by which ionizing photons es-

cape individual SFGs. Since their initial discovery by

the Galaxy Zoo project from the Sloan Digital Sky Sur-

vey (SDSS) in 2009, a class of compact, luminous dwarfs

known as Green Pea (GP; Cardamone et al. 2009) galax-

ies have become popular targets for their broad similar-

ity to high-z SFGs in terms of metallicity, line ratios and

specific star formation rates (sSFRs), the ratio of SFR

to stellar mass (e.g. Nakajima & Ouchi 2014; Izotov

et al. 2011; Henry et al. 2015).

Green Peas have low stellar mass (M∗ < 1010 M�),

high sSFRs and redshifts z < 0.4 (Izotov et al. 2011,

2017). Originally selected by their characteristic green

optical color, GPs have since been found to have very

high [O III] λ5007 / [O II] λ3727 (O32) optical emission

line ratios, suggestive of density-bounded nebulae (e.g.

Jaskot & Oey 2013), and are generally metal-poor sys-

tems with mean oxygen abundances of 12 + log(O/H) ∼
8.0, roughly 1/5 the solar value (e.g. Izotov et al. 2011).

More GPs have since been discovered with the same O32

and color properties as the original SDSS sample. A sig-

nificant fraction show high Lyα escape fractions (fLyαesc )
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Figure 1. VLA L-band 20 km/s channel map of the
targeted region, centered on J1608’s rest frame 21cm fre-
quency at ν = 1.3754GHz. A white circle and white box
indicate positions for J1609+35 and J1608+35. The inset
figure shows ±3σ noise fluctuations near J1608’s optical co-
ordinates, marked as a black x. All other sources in the
image are detected in continuum only and show no spectral
features. Our non-detection sets an upper limit on J1608’s
HI mass of logMHI/M� < 8.4.

from 1− 50% (e.g. Henry et al. 2015; Yang et al. 2017;

Verhamme et al. 2017; Jaskot et al. 2017).

In addition to being strong Lyα emitters (LAEs),

extreme GPs include some of the only known LyC-

leaking star-forming galaxies at low redshift (Izotov

et al. 2016a,b, 2017, 2018a). As such, GPs are ideal lab-

oratories for studying the escape of ionizing radiation

from extreme environments. The high SFR surface den-

sities and emission line strengths seen in GPs indicate

large populations of hot, young stars that produce copi-

ous ionizing flux (e.g. Jaskot & Oey 2013; Schaerer et al.
2016; Verhamme et al. 2017). At the same time, GPs

may have HI column densities > 1019 cm−2, sufficient

to absorb LyC photons and scatter Lyα (e.g. Gazagnes

et al. 2018; Chisholm et al. 2018). If feedback clears

large cavities of ionized gas, Lyα and LyC photons could

escape directly through these channels (Clarke & Oey

2002; Heckman et al. 2011). Thus, the escape properties

of GPs may depend on a combination of gas geometry,

kinematics and column density. Multi-wavelength stud-

ies are required to assess neutral gas signatures such as

total covering fraction, outflow velocities and total HI

mass.

Few LCEs have HI observations. Studies of 21-cm

emission have been conducted for two confirmed lo-

cal, LyC-leaking galaxies, Haro 11 and Tololo 1247-232

(hereafter Tol 1247), for which individual star-forming

knots were resolved (Pardy et al. 2016; Puschnig et al.
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Figure 2. J1608’s continuum-subtracted L-Band spectrum taken with the VLA, binned to a resolution of 20 km/s. The top
axis shows relative velocities in km/s from J1608’s expected restframe 21cm emission for a redshift of z = 0.0327. Systemic
velocity is noted with a vertical red line. Vertical black lines mark an RFI-obscured spectral segment. Horizontal dotted and
dashed lines indicate average ±2σ and ±3σ noise uncertainties respectively.

2017). Haro 11 has a low HI gas mass of MHI/M∗ =

5.1 × 108 (Pardy et al. 2016), and 21cm limits con-

strain MHI/M∗ < 109 in Tol 1247 (Puschnig et al. 2017).

Both have low gas fractions (MHI/M∗ . 0.2), suggest-

ing that LyC and Lyα escape are related to neutral gas

deficiency. However, Tol 1247 and Haro 11 are more

massive and leak fewer LyC photons compared to many

LCE GPs.

In this paper we study the relationship between neu-

tral gas and Lyα escape in GPs. We use Very Large Ar-

ray (VLA) 21cm imaging of the most highly ionized GP

J160810+352809 (hereafter J1608), and Hubble Space

Telescope Cosmic Origins Spectrograph (COS) observa-

tions of 17 GPs. These GPs have redshifts 0.02 < z <

0.2, some of the highest O32 ratios ( ∼ 7− 35) of SFGs

in SDSS and show a variety of Lyα profiles ranging from

deep absorption to strong, narrow, double-peaked emis-

sion. Lyα escape fractions, defined as the ratio of ob-

served to intrinsic Lyα flux, are as high as 58%, and Lyα

peak separations are as low as 200 km/s (Henry et al.

2015; Jaskot et al. 2017), both potential indicators of

low optical depth and LyC escape (e.g. Verhamme et al.

2017). With our high-resolution UV spectra, we derive

gas column densities and covering fractions and explore

their relationship with Lyα emission.

This paper is organized as follows: In section 2 we

present our VLA observations of J1608 and discuss their

implications. Section 3 describes our UV sample se-

lection and HST COS measurements and explores our

adopted model. Our UV results are summarized in sec-

tion 4. In Section 5 we discuss Lyα escape from GPs

in the context of high HI column densities and low cov-

ering fractions. Section 6 summarizes our conclusions.

Throughout this work we adopt a ΛCDM cosmology

with ΩM = 0.3, ΩΛ = 0.7 and H0 = 70 km s−1 Mpc−1.

2. 21CM VLA OBSERVATIONS OF J1608+35

An enormous O32 = 34.9 and a low Lyα peak sep-

aration of 214 km s−1 make J1608 a good candidate

for escaping LyC radiation (e.g. Jaskot et al. 2017;

Verhamme et al. 2017). J1608 has a low stellar mass

logM∗/M� = 7.04 (Izotov et al. 2017), is roughly

∼ 3′′ × 3′′ in optical SDSS images and has a Petrosian

radius (Rp), the radius at which the ratio of local surface

brightness in an annulus to the mean surface brightness

is equal to 0.2, of Rp = 0.3′′ from our HST NUV acqui-

sition images. J1608 is extremely ionized and compact,

suggesting low neutral gas densities if its HII regions

are density-bounded. As mentioned above, local LCEs

Tololo 1247-232 and Haro 11 have notably small HI gas

fractions (fHI ≤ 0.2) determined from VLA 21cm imag-

ing (Pardy et al. 2016; Puschnig et al. 2017), and have

likely processed much of their neutral gas reservoir.

2.1. Analysis

We observed J1608 at 1-2 GHz with the Karl G. Jan-

sky Very Large Array (VLA) under program VLA/16A-

176 (PI: Jaskot), targeting rest frame 21cm neutral hy-

drogen emission. The VLA was in C-configuration (3.5

km maximum baseline) and imaged J1608 for a total

of ∼ 7.2 hours on target in three observing sessions

in 2016 March and April. For the purposes of self-

calibration, we deliberately offset the pointing center by

5 arcmin towards J160923+352242 (hereafter referred

to as J1609+35), a 593 mJy continuum source in the

NRAO VLA Sky Survey (NVSS; Condon et al. 1998).

All 27 antennas were functional, and we used five spec-

tral windows with a phase center of 1.3754 GHz and

individual bandwidths of 2000 kHz. The flux density

scale was set by observing the standard flux calibrator

J1331+3030 (3C286) at the start of each night. Phase

calibrations were determined by observing J1613+3412

at regular intervals.
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Figure 3. (a) Stellar mass vs. HI mass. ALFALFA dwarfs are plotted with a green circle. Blue + markers denote BCDs
from Thuan et al. (2016). J1608 is shown as a red square with an arrow to denote the 3σ upper limit. Contours correspond to
38%, 68% and 98% distributions of galaxies in SDSS DR8 (Eisenstein et al. 2011) with HI masses from the ALFALFA survey
(Huang et al. 2012a). We also show Tol 1247 and Haro 11 as a red diamond and blue hexagon respectively. (b) Specific star-
formation rate vs. HI gas fraction (MHI/M∗). (c) M∗ vs. SFR/MHI . All SFRs are derived from Hα, except for ALFALFA
dwarfs where we adopt the SFRs presented in Huang et al. (2012b), which may fall below Hα estimate by at most ∼ 1 dex for low
SFR. However, this predominantly affects dwarf galaxies at low fHI and does not change the fact that J1608 has an unusually
high SFR/MHI ratio. We have scaled the 2σ MHI limit for Tololo 1247 from Puschnig et al. (2017) to 3σ for consistency with
J1608.

We manually flagged for radio frequency interference

(RFI) and faulty baselines using the Common Astron-

omy Software Applications package (CASA; McMullin

et al. 2007) version 5.0.0. A known RFI signature ∼ 150

km/s from the target frequency appeared in each observ-

ing epoch and was present in visibility data for the sci-

ence goal and each calibrator. The corresponding chan-

nels were removed entirely to minimize noise near ex-

pected 21cm emission. Prior to calibration, we masked

visibilities at potential spectral line frequencies from

down-weighting. We then calibrated each night with the

CASAv4.5.0 automated reduction pipeline, turning off

Hanning smoothing to preserve the spectral resolution.

Separate observations were re-gridded to the same ve-
locity axis and combined prior to continuum subtraction

to enhance emission from J1608 if present. However, no

continuum emission was detected in individual nights or

the combined dataset. Continuum emission from other

sources in the field were linearly fit in the uv−plane and

subtracted from the visibility data. To image and de-

convolve, we interactively cleaned using tclean with a

default gain setting of 0.1. We used Briggs weighting

and set the robust parameter R = 0.5 to balance be-

tween resolution and sensitivity. The restoring beam

size is ∼ 16′′ × 14′′ with a position angle of -73.8 de-

grees. Figure 1 shows a slice of the VLA spectral cube

at J1608’s redshifted 21cm frequency of 1.3754GHz after

binning the data to a resolution of 20 km/s. We measure

a continuum flux density for J1609+35 of 607.9 ± 0.22

mJy.

The 21cm hydrogen hyperfine structure line was not

detected in J1608’s VLA spectrum, as shown in Figure

2. We place an upper limit on the total HI gas mass

using an RMS of 0.261 mJy/beam estimated from the

VLA map binned to 20 km/s. J1608 is unresolved in

the VLA beam, corresponding to a flux density limit of

0.261 mJy. We set an HI mass upper limit using the

relation of Roberts & Haynes (1994)

MHI

M�
= 2.36× 105

( D

Mpc

)2(S21cm

Jy

)(W21cm

km/s

)
(1)

where D is the luminosity distance, S21cm is the 21cm

line flux, and W21cm is the 21cm line width. We as-

sume a 3σ detection threshold of S21cm ≈ 0.78 mJy and

W21cm = 36.1 km/s, characteristic of HI dwarf galaxies

in the The Arecibo Legacy Fast ALFA (ALFALFA) sur-

vey with stellar masses between 106 − 108 M� (Huang

et al. 2012b). We place a 3σ upper limit on J1608’s HI

mass at logMHI/M� ≤ 8.14.

2.2. Comparison with other Galaxies

J1608’s neutral gas mass is either typical or below

average for galaxies of comparable stellar mass. Figure

3a compares J1608’s stellar and HI masses with those of

blue compact dwarfs (BCDs) (Thuan et al. 2016), and

HI-selected ALFALFA dwarfs (Huang et al. 2012b). Our

upper limit on J1608’s HI mass is near the average of

both comparison dwarf populations.

To further investigate the HI content of J1608 we cal-

culate a 3σ upper limit on its HI mass fraction (fHI ≡
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Table 1. J1608 Predicted HI Mass Fractionsa

Correlation log fHI,pre Referenceb

M∗

1.20 1

sSFR

µ∗ 1.56 2

µ∗ 1.65 1

µr90 1.65 1

NUV − r

µ∗ 2.62 (1.13) 2

µ∗ 1.39 (1.55) 1

µr90 1.36 (1.48) 1

g − r

µ∗ 2.64 (1.39) 1

µr90 2.21 (1.38) 1

aColumn 1 shows the quantities correlated against
each quantity in the subheader whose relation
yields the prediction for log fHI,pre in column 2, us-
ing the scaling relations from reference in column
3. Values given in parentheses are estimated us-
ing continuum fluxes which exclude line emission.
We correct for Milky Way and/or internal extinc-
tion as necessary for consistency with each scaling
relation.
b (1) Huang et al. (2012a), (2) Zhang et al. (2009)

MHI/M∗) of log fHI ≤ 1.1 assuming logM∗/M� = 7.04

(Izotov et al. 2017). We then compare fHI with pre-

dicted HI mass fractions (fHI,pre) from scaling relations

using combinations of optical and UV color, M∗, stellar

mass surface density µ, and sSFR. To estimate the stel-

lar mass surface density, we adopt J1608’s stellar mass

reported in Izotov et al. (2017). We then calculate µ∗
and µr90 consistently with the published scaling rela-

tions as µ∗ = 0.5M∗/(πr
2
50z) and µr90 = 0.5M∗/(πr

2
90r)

where r50z is the radius containing 50% of Petrosian flux

in the SDSS z band, and r90r the radius containing 90%

of Petrosian flux in the SDSS r band.

We use scaling relations calibrated on optically-

selected SDSS galaxies (Zhang et al. 2009) and the

HI-selected ALFALFA sample (Huang et al. 2012a). In

general, these scaling relations are linear over four or-

ders of magnitude in fHI with typical RMS scatter of

σ ∼ 0.3 dex. We correct J1608’s observed magnitudes

for Milky Way and/or internal extinction as necessary

for consistency with each scaling relation. To correct

for Milky Way extinction, we use the Fitzpatrick (1999)

extinction law and Schlafly & Finkbeiner (2011) dust

map. We correct J1608’s NUV − r and g − r colors

for internal extinction when necessary using techniques

discussed in Section 3. In addition to using observed

magnitudes, we also estimate g, r and NUV from optical

continuum fluxes as colors could be skewed by J1608’s

strong metal line emission. We estimate line-free mag-

nitudes by convolving continuum fits through the SDSS

filters. For consistency with comparison samples, we use

J1608’s dust-corrected Hα luminosity of 9.473×1041 erg

s−1 and the Kennicutt (1998) SFR relation to estimate

log SFRHα/(M� yr−1) = 0.876. The SFR derived from

SED modeling is 0.6 M�/yr (Izotov et al. 2017), close

to our Hα-derived value.

Table 1 lists fHI,pre calculations for multiple scaling

relations. Our VLA-derived fHI upper limit is below

all predictions by a factor of ∼ 0.5 dex on average.

Adopting an HI line-width of W21cm ∼ 60 km/s boosts

J1608’s HI limits to logMHI/M� ≤ 8.36 and log fHI ≤
1.3, which remains below the majority of predicted HI

mass fractions. The scaling relations used in estimating

fHI,pre are independent of HI assumptions. Moreover,

∼ 15% of dwarf galaxies in the ALFALFA sample with

stellar masses between logM∗/M� = 6.5 − 7.5 derived

from SED fitting have HI line widths > 60 km/s (Huang

et al. 2012b). Thus, an HI line width > 60 km/s is un-

likely, and J1608 has less neutral gas than would other-

wise be expected for its bright UV/optical photometry.

While J1608 may be typical in terms of its baryonic

mass alone, the SF properties of this GP are highly

unusual. As is the case for Tololo-1247 and Haro 11,

J1608’s Hα-derived sSFR is nearly an order of magni-

tude greater than galaxies of comparable gas fraction

(Fig. 3b). However, star-formation in dwarf galaxies

is not constant (e.g. McQuinn et al. 2010; Weisz et al.

2011; Hopkins et al. 2014); J1608’s sSFR estimate may

be enhanced by a recent burst. A young starburst would

boost J1608’s Hα emission and therefore its Hα-derived

SFR. A recent burst could also explain J1608’s unusual

SFR/MHI for its M∗ (Fig. 3c). J1608, Tololo-1247 and

Haro 11 all likely have unusually large quantities of mas-

sive stars relative to their HI masses. Stellar feedback,

either radiative or mechanical, may overpower the neu-

tral gas content in these galaxies more easily, clearing

optically thin channels by which LyC and Lyα photons

can escape.

3. UV SPECTRA OF EXTREME GREEN PEAS

We analyze HST COS spectra of 17 GPs, of which

13 are from Program GO-14080 (PI Jaskot) and were



6

Table 2. Green Pea sample properties.

Galaxy z 12+log(O/H) O32 fLyαesc EW(Lyα)a ∆vLyα
b EW(Hα) AV

(Å) (km s−1) (Å)

J144805-011058 0.0274 8.11+0.04
−0.05 7.8±0.3 0.0 −18± 0.1 – 805± 6 0.36± 0.03

J160810+352809 0.0327 7.83+0.13
−0.19 34.9±3.5 0.18± 0.04 163± 12 214± 30 1472± 23 0.39± 0.05

J133538+080149 0.1235 8.10+0.22
−0.45 7.3±0.4 0.0 −14± 0.5 – 827± 9 0.14± 0.04

J145735+223202 0.1487 8.05+0.09
−0.12 7.2±0.5 0.01± 0.01 −4± 1 749± 56 – 0.24± 0.03

J150934+373146 0.0326 7.88+0.08
−0.10 15.1±0.9 0.05± 0.02 12± 1 400± 27 1411± 14 0.24± 0.04

J085116+584055 0.0919 7.87+0.10
−0.14 9.4±0.5 0.04± 0.01 26± 2 361± 25 1595± 23 0.36± 0.04

J021307+005612 0.0399 8.03+0.08
−0.10 7.2±0.4 0.12 ±0.02 42± 4 397± 47 1016± 10 0.42± 0.04

J122612+041536 0.0942 7.99+0.10
−0.12 8.3±0.5 0.13± 0.02 64± 3 360± 40 1060± 14 0.28± 0.04

J024052-082827 0.0822 7.91+0.09
−0.12 13.7±0.6 0.19± 0.04 154± 8 266± 29 1752± 17 0.33± 0.03

J173501+570309 0.0472 8.11+0.07
−0.08 6.8±0.3 0.09± 0.04 64± 4 460± 47 1442± 10 0.41± 0.02

J230210+004939 0.0331 7.72+0.07
−0.08 8.6±0.6 0.28± 0.06 64± 3 279± 48 897± 11 0.16± 0.04

J131131-003844 0.0811 7.98+0.12
−0.17 6.6±0.2 0.23± 0.05 71± 4 273± 26 1106± 10 0.36± 0.02

J120016+271959 0.0819 8.05+0.06
−0.07 8.9±0.5 0.39± 0.08 114± 7 327± 65 1057± 10 0.19± 0.03

J080841+172856 0.0442 7.61+0.13
−0.18 10.3±0.9 0.36± 0.07 31± 2 146± 37; 441± 58c 424± 5 0.35± 0.03

J081552+215624 0.1410 8.02+0.12
−0.03 10.1±0.7 0.28± 0.06 68± 4 296± 52 – 0.13± 0.04

J030321-075923 0.1649 7.91+0.12
−0.12 7.1±0.5 0.05± 0.01 6± 1 443± 156 697± 12 0.03± 0.04

J121904+152609 0.1956 7.88+0.21
−0.03 10.5±0.7 0.58± 0.08 17± 9 242± 43 1266± 21 0.09± 0.04

aMeasurement includes both absorption and emission. Negative values indicate net absorption. See Jaskot et al. (in prep.) for
details.
bLyα peak separation from Jaskot et al. (2017).

cTriple-peaked system with two blue Lyα peaks.

observed with the G130M grating in Cycle 23 at

lifetime Position 3. Jaskot et al. (in prep.) de-

scribes the HST program in more detail, and also

includes SDSS and COS NUV acquisition images of

the sample. J145735+223202 (hereafter J1457) and

J081552+215624 (hereafter J0815) were observed during

Program GO-13293 (PI Jaskot) with the G160M grat-

ing. J121904+152609 (hereafter J1219) and J030321-

075923 (hereafter J0303) are from GO-12928 (PI Henry)

and were observed with the G130M and G160M grat-

ing. Our cumulative sample spans a redshift range of

z = 0.0274−0.1956 and was selected for large [O III]/[O

II] ratios and high S/N from the SDSS Data Release 10

(Ahn et al. 2014). The wavelength coverage of each

spectrum is ∆λ ≈ 300 Å with a range common to most

of λrest = 1120 − 1340 Å, always including redshifted

Lyα. Data reduction techniques are described in (Jaskot

et al. in prep.) and are summarized here.

Each COS observation was binned to its own spec-

tral resolution depending on the spatial extent of the

target. Resolutions for sources observed in GO-14080

are between 12− 34 km/s, marginally wider than point

source profiles and are derived from the FWHM of the

cross-dispersion profiles. GPs from GO-13293 and GO-

12928 are binned to resolutions from 30− 41 km/s and

28−45 km/s respectively to increase S/N. Separate res-

olutions were calculated for the A and B spectral seg-

ments. Linear continuum fits were estimated in the

1140 − 1290 Å rest-frame region after masking out ab-

sorption and emission features. Milky Way extinction

was accounted for using the Fitzpatrick (1999) law and

Schlafly & Finkbeiner (2011) extinction maps. As dis-

cussed in Jaskot et al. (2017) and Jaskot et al. (in prep.),

the UV continuum and Lyα emission trace comparably

compact regions, and Lyα emission is not significantly

more extended than the UV continuum in the GPs’ COS
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Figure 4. COS spectra of GPs showing Lyα absorption. Targets are sorted in order of decreasing HI column density from top
to bottom. Best-fit models are shown in solid blue. Dotted segments are removed from the fitting routine due to the presence
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2D spectra. Thus, the GPs’ Lyα emission likely origi-

nates from the starburst region itself.

We used optical SDSS emission lines to determine the

GPs’ internal reddening, oxygen abundances, and [O

III]/[O II] ratios. To correct for internal extinction, we

follow Izotov et al. (2017) and use the Hα/Hβ ratios and

the Cardelli et al. (1989) extinction law, which was found

to provide better fits to UV/IR fluxes and emission lines

in extreme emission line galaxies (see also Jaskot et al.

in prep.). We adopt RV = 2.7 in GPs with Hβ EWs

> 150Å and RV = 3.1 otherwise.

We calculate Lyα escape fractions as in Jaskot et al.

(2017), using the dust-corrected Hα fluxes and the

Lyα/Hα ratios appropriate for each GP’s tempera-

ture. Electron temperatures were calculated using

PyNeb (Luridiana et al. 2015) with the dust-corrected

λλ5007, 4959 to λ4363 flux ratios. Oxygen abun-

dances were also calculated in PyNeb via the direct

method, using the derived electron temperatures, [O

III]λ5007, 4959 fluxes and [O II] λ3272 fluxes. We adopt

an ionization correction factor for non-detected O ion-

ization states from Pérez-Montero (2017), constrained

by the GPs’ HeI and HeII emission. Lyα emission prop-

erties, metallicities, redshifts and [O III]/[O II] values

are reported in Table 2.

3.1. NHI Derived from Lyα

Eight out of 17 GPs show significant Lyα absorption

wings, an unusual statistic compared to previous studies

of GPs with lower [O III]/[O II]. For instance Yang et al.

(2017) found non-negligible Lyα absorption in only 1/3

of 48 GPs. Furthermore Henry et al. (2015) and Ver-

hamme et al. (2017) did not detect any Lyα absorption

in a sample of 10 GPs and 5 GP LCEs respectively. We

note that different integration times between samples

and low S/N may affect the detection of Lyα absorp-

tion.

Six of the GPs in our sample that show Lyα absorption

also show strong, double-peaked Lyα emission. High

Lyα escape fractions and low Lyα peak separation make

some of these GPs good LCE candidates (Verhamme

et al. 2015), and the presence of both Lyα absorption

and emission in the same galaxy suggests both opti-

cally thick and optically thin regions along the line of

sight. This geometry may be consistent with a scenario

in which Lyα and LyC escape through low-column den-

sity channels (e.g. Heckman et al. 2011; Rivera-Thorsen

et al. 2015; Puschnig et al. 2017; Gazagnes et al. 2018;

Chisholm et al. 2018).

We measure HI column densities for the eight Lyα-

absorbing GPs in our sample by fitting Voigt profiles to

the Lyα absorption. The radiative transfer equation for

pure absorption is

F (λ|N, b, z) = F0(λ)e−τ(λ|N,b,z) (2)

where F is the emergent flux, F0 is the continuum, N is

the absorbing column density, b is the Doppler parame-

ter and z is the target’s redshift. Voigt profiles are the

convolution of a Gaussian and Lorentzian profile, with

optical depth

τ(λ|N, b, z) = Nσ0fΦ(λ|b, z) (3)

where Φ(λ) is calculated with the real part of the Fad-

deeva function as implemented in SciPy. The cross sec-

tion and line oscillator strength are given by σ0 and f re-

spectively. We allow N and b to vary in our fits but keep

z fixed at its spectroscopically confirmed value. Lyα line

centers are allowed to vary between ±1000 km/s to ac-

count for bulk gas motion through a velocity shift pa-

rameter δv. Jaskot et al. (2017) reported evidence for

low outflow velocities < 300 km/s in this sample, and

in practice the majority of fits never reach such extreme

values.

Observational evidence suggests that absorbing gas

may not fully cover ionizing sources in some star-forming

galaxies (e.g Heckman et al. 2011; Rivera-Thorsen et al.

2015; Gazagnes et al. 2018). We consider this scenario

by using a covering fraction parameter fLyα
cov , and adopt-

ing the “picket-fence” model with a uniform dust screen

introduced by Heckman et al. (2001). The intensity at

the core of the Lyα line may be non-zero either due

to non-uniform covering fraction (e.g. Heckman et al.

2011) or due to infilling, where hydrogen gas scatters

Lyα photons into the line of sight. The final spectral

model is

F (λ|N, b, δv, fLyα
cov ) = F0(λ)×(

fLyα
cov FV oigt(λ|N, b, δv) + (1− fLyα

cov )
)

(4)

We stress that our model is intended to only fit

damped Lyα absorption wings in low-dust GPs. We ex-

clude all nebular, stellar and Milky Way lines from the

fit as well as central Lyα emission if present. We note

that the above model is commonly modified to allow for

unattenuated stellar emission emerging from optically

thin regions (e.g. Zackrisson et al. 2013; Gazagnes et al.

2018). However, our sample has AV = 0.03 − 0.42 for

which the ratio in model-predicted flux with and with-

out dust porosity is on the order of one part in 105.

Therefore, the assumption of a particular dust geome-

try does not significantly impact our results. Finally, we

checked that stellar Lyα absorption is negligible by com-

paring against the Binary Population and Spectra Syn-

thesis (BPASS) stellar population models (BPASSv2.1;
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Figure 5. Same as figure 4 but showing GPs for which models could not be implemented due to weak or absent Lyα absorption.
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Figure 6. Example joint posterior distributions for NHI, δv
and fLyα

cov taken from the fit to J1457. The Doppler param-
eter b has a flat posterior in all fits and is not shown. Red
contours represent 68% and 99% confidence limits. The red
cross indicates best-fit parameter values where the likelihood
function is maximized. Posteriors are drawn in black on their
respective axes.

Eldridge et al. 2017). For ages < 5 Myr, as expected

for the GPs (e.g. Jaskot & Oey 2013), stellar Lyα ab-

sorption profiles do not extend beyond ±10 km/s of line

center whereas the absorption seen in the COS spectra

appears beyond ±1000 km/s from line center.

We fit the Lyα absorption wings using Markov Chain

Monte Carlo (MCMC). We use the stretch-move al-

gorithm as implemented in emcee, an open-sourced

MCMC routine presented in Foreman-Mackey et al.

(2013). We use 100 walkers that move as an ensemble,

taking 10,000 steps through the 4-dimensional param-

eter space. We assume uniform priors with consistent

limits across all fits. The fit’s output is a set of poste-

rior probability distributions for each parameter.

Our derived HI column densities are listed in Table 3.

We determine best-fit values from the MCMC step that

maximizes the likelihood function. In the eight mod-

eled GPs, we measure HI column densities greater than

1019 cm−2, evidence for significant neutral gas reser-

voirs along the line of sight, even in targets with strong

Lyα emission. Figure 4 shows the model fits and il-

lustrates the strong and often double-peaked Lyα emis-

sion profiles superimposed on top of deep absorption. In

comparison, we show all other GP spectra for which no

models could be fit in Figure 5. We note that GPs such

as J0240 and J1311 still show Lyα absorption, but the

COS chip-gap prevents us from fitting a reliable model.

Figure 6 shows an example of the typical free-

parameter covariances and behaviors seen in our fits.

The Voigt Doppler parameter b has no impact on the

goodness-of-fit in every case. We find that fLyα
cov poste-

riors flatten out after an initial peak, are overall poorly

constrained but do influence HI column density mea-

surements. Best-fit NHI values increase by ∼ 0.3 dex on

average when compared to models with fixed fLyα
cov = 1.

In either case, NHI posteriors are generally Gaussian

in appearance with standard deviations on the order of

≤ 0.1 dex for a given value of fLyα
cov .

Column density and velocity offset are typically un-

correlated in our sample except for J1608, J0213 and

J0851, where Lyα absorption is obscured by either the

COS chip-gap or broad N V P-Cygni features seen in

young, massive stars over the ∼ 1220Å − 1240Å range.

In such cases the MCMC algorithm finds good fits by

either increasing column density or shifting the entire

Voigt profile blueward or redward. Small velocity off-

sets . 40 km/s seen in low-ionization metal lines suggest

that for these objects a higher column density scenario

is more likely (see Jaskot et al. 2017). We re-fit J1608,

J0213 and J0851 with fixed δv and find that best-fit col-

umn densities change by only 0.1%. HI column densities

and errors presented for J0213 and J0851 in Table 3 cor-

respond to models allowing δv to vary. We fix δv = 0

when fitting J1608, a reasonable assumption as most of

J1608’s metal lines show nearly zero velocity (e.g. Jaskot

et al. 2017).

3.2. Low-Ionization Interstellar Absorption Lines

For an independent measurement on covering frac-

tions and column densities, we use low-ionization state

(LIS) metal lines with ionization potentials less than

13.6 eV to infer covering fractions and column densi-

ties for our sample. Our HST spectra show numerous

nebular and stellar emission lines; we restrict our cur-

rent analysis to Si II and O I because of their low ion-

ization potentials. Si II is the dominant ion of silicon

in the ISM and is commonly used to trace neutral gas

geometry and kinematics (e.g. Heckman et al. 2011;

Rivera-Thorsen et al. 2015; Chisholm et al. 2018; Gaza-

gnes et al. 2018). We also observe multiple Si II lines

with different strengths which provide robust constraints

on line saturation. Specifically, we use Si II and O I to

calculate covering fractions, assess optical depth and to

constrain neutral gas column densities.

In general, the residual intensity within an absorption

line is sensitive to the column density of absorbing ma-

terial as well as the covering fraction of a background
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Table 3. Derived Column Densities and Covering Fractions.

GP logNHI/cm−2 logN/cm−2 logN/cm−2 logN/cm−2 logN/cm−2 logN/cm−2 fSiII
cov

Lyα Si II λ1190 Si II λ1193 Si II λ1260 Si II λ1304 O I λ1302

J1448-01 21.49± 0.02 14.34± 0.23 14.16± 0.33 14.17± 0.16 14.32± 0.12 15.27± 0.24 0.94± 0.03

J1608+35 21.39± 0.13 14.03± 0.19 13.64± 0.21 - 13.95± 0.30 14.05± 0.20 0.42± 0.08

J1335+08 21.23± 0.05 15.60± 0.17 14.64± 0.28 14.79± 0.17 15.48± 0.42 15.63± 0.31 0.97± 0.04

J1457+22 20.55± 0.11 - - 14.07± 0.42 14.95± 0.47 14.88± 0.56 0.99± 0.12

J1509+37 20.49± 0.03 14.49± 0.21 13.99± 0.18 - 14.55± 0.17 14.79± 0.07 0.82± 0.03

J0851+21 20.35± 0.07 14.49± 0.31 - 14.33± 0.49 14.65± 0.41 14.96± 0.38 0.86± 0.04

J0213+00 20.00± 0.21 14.27± 0.08 14.12± 0.12 13.61± 0.27 14.27± 0.17 - 0.54± 0.03

J1226+04 19.47± 0.64 - - 13.59± 0.31 14.38± 0.40 14.64± 0.31 0.60± 0.03

J0240-08 - 14.29± 0.19 13.96± 0.29 13.55± 0.23 - - 0.38± 0.08

J1735+57 - 14.45± 0.40 14.01± 0.10 13.64± 0.20 - 14.66± 0.13 0.49± 0.04

J2302+00 - 13.91± 0.28 - - - - 0.28± 0.12

J1311+00 - 14.21± 0.22 13.58± 0.16 13.26± 0.20 14.30± 0.19 - 0.45± 0.02

J1200+27 - 13.92± 0.21 - 12.95± 0.24 - - 0.24± 0.10

J0808+17 - < 12.04 < 11.70 < 11.16 < 12.33 < 12.52 < 0.16

J0815+58 - - - < 11.16 < 12.43 < 12.58 < 0.45

J0303-07 - - - 13.78± 0.49 14.90± 0.42 15.12± 0.46 0.40± 0.07

J1219+15 - < 12.52 < 12.21 < 11.60 < 12.77 < 12.94 < 0.93

Note—GPs are ordered by decreasing logNHI. Si II and O I column densities were calculated using the apparent
optical depth method for all available absorption lines in each target. Upper limits on column densities and covering
fractions were calculated for GPs without detected LIS absorption, and all upper limits are quoted at 3σ levels.

source of light. Comparing multiple lines with different

oscillator strengths fλ can lift this degeneracy (Savage

& Sembach 1991). We consider two scenarios: an op-

tically thin shell with uniform coverage and optically

thick clouds interspersed with optically thin channels.

If the gas is optically thin, the depth of an absorp-

tion line depends on the species’ oscillator strength, and

equivalent widths grow ∝ Nfλ2 on the linear part of

the curve of growth. In particular the ratio between

equivalent widths of two optically thin lines is given by

EWi/EWj = fiλ
2
i /fjλ

2
j , assuming complete coverage of

the background source.

Another scenario is that the background source is only

partially covered by optically thick clouds and radia-

tion escapes through optically thin channels (e.g. the

“picket-fence” model; Heckman et al. 2011). In this case,

the residual intensity depends primarily on the covering

fraction. Equivalent width ratios grow independently of

fiλ
2
i , and line profiles appear identical across different

transitions. Equivalent width ratios are therefore a pow-

erful tool in discriminating between these optically thin

and thick conditions.

We study five LIS lines found in most of our COS spec-

tra: O I λ1302, Si II λ1190, λ1193, λ1260, and λ1304.

For each transition, we calculate equivalent widths by

integrating

EW ≡
∫ (

1− F

F0

)
dλ (5)

over the wavelength range where the line falls below the

continuum level. F and F0 are the absorption line and

continuum fluxes respectively. Equivalent widths are

shown in Table 4. Column densities of each species are

evaluated by

N =
mec

πe2fλ

∫
ln
F

F0
dλ (6)

over the same wavelength range. Error bars are es-

timated for equivalent widths and column densities
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Table 4. Derived Equivalent Widths.

GP EW(Si II λ1190) EW(Si II λ1193) EW(Si II λ1260) EW(Si II λ1304) EW(O I λ1302)

(Å) (Å) (Å) (Å) (Å)

J1448-01 1.15± 0.19 0.84± 0.09 1.39± 0.13 0.7± 0.1 0.94± 0.15

J1608+35 0.17± 0.09 0.04± 0.04 - 0.19± 0.12 0.11± 0.08

J1335+08 1.07± 0.25 0.78± 0.25 1.36± 0.29 0.91± 0.31 1.04± 0.36

J1457+22 - - 0.85± 0.19 0.62± 0.21 0.73± 0.21

J1509+37 0.53± 0.08 0.35± 0.06 - 0.34± 0.07 0.32± 0.07

J0851+21 0.76± 0.15 - 0.93± 0.2 0.45± 0.1 0.48± 0.1

J0213+00 0.45± 0.11 0.68± 0.21 0.51± 0.14 0.22± 0.12 0.15± 0.13

J1226+04 - - 0.55± 0.15 0.24± 0.1 0.28± 0.15

J0240-08 0.68± 0.37 0.61± 0.3 0.69± 0.39 0.34± 0.21 0.41± 0.2

J1735+57 0.70± 0.17 0.47± 0.13 0.71± 0.27 0.33± 0.14 0.49± 0.37

J2302+00 0.15± 0.09 0.09± 0.07 - - 0.31± 0.29

J1311+00 0.44± 0.12 0.22± 0.11 0.35± 0.17 0.26± 0.15 0.28± 0.22

J1200+27 0.4± 0.2 0.13± 0.15 0.17± 0.13 - 0.19± 0.2

J0808+17 0.14± 0.4 0.05± 0.33 - - -

J0815+58 - - - - -

J0303-07 - - 0.93± 0.48 0.52± 0.39 0.92± 0.45

J1219+15 - - - - -

through Monte Carlo simulations where the same anal-

ysis is repeated 1000 times after perturbing each flux

point by a random normal deviate drawn from the spec-

tral noise distribution and allowing the continuum to

fluctuate randomly by 10%. We take the standard de-

viation of the distribution of derived quantities as the

uncertainty. Table 3 includes all LIS column density

measurements.

It was necessary to estimate J1448’s continuum in the

region of Si II λ1190, 1193 accounting for overlap with

Milky Way Lyα absorption. In practice this involved fit-

ting a Voigt profile to the Milky Way absorption region

and stitching that result to the best-fit model already

established from J1448’s Lyα MCMC fit. We calculate

N and EW as before for J1448, still allowing for 10%

continuum uncertainty.

3.3. Covering Fractions

The equivalent width ratios in our sample are consis-

tent with saturation. This suggests that the non-zero

fluxes at absorption line centers are due to radiation es-

caping through optically thin channels. These results

agree with the gas properties of Lyman break analogs

as well as confirmed LyC-emitters (Heckman et al. 2011;

Gazagnes et al. 2018; Chisholm et al. 2018). We there-

fore consider the Heckman et al. (2011) “picket-fence”

model where optically thick clouds cover a fraction fcov

of the ionizing source on the sky. For saturated tran-

sitions and low dust content, the covering fraction is

directly related to the residual intensity at the central

wavelength λc of each absorption profile by

fcov(λc) = 1− F (λc)

F0(λc)
(7)

We infer Si II covering fractions following Heckman

et al. (2011) by simultaneously fitting a single Gaussian

absorption profile to all available Si II species in the HST

COS spectra. We keep Gaussian widths and velocity off-

sets the same for each transition but allow the depths

to vary independently. We estimate fcov by applying

Equation 7 to the Gaussian fits and averaging over all

available Si II lines. This technique is shown for J1335 in

Figure 7. Average values are within the uncertainty of

individual measurements, and error bars are calculated
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Gaussian fits to each line are shown in red. The fit maintains
a constant velocity offset and width for each line but allows
the individual depths to vary. Vertical solid black lines in-
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lines show a normalized flux of unity.

using the Monte Carlo techniques discussed previously.

All fits were calculated with Levenberg-Marquardt χ2-

minimization implemented in the Python package lmfit

(Newville et al. 2014). In some cases the observed Si II

covering fraction may be marginally > 1. We attribute

this to either observational noise or uncertainty intro-

duced during continuum normalization. Therefore, we

interpret all covering fractions above unity as at most

equal to one.

We calculate 3σ upper limits on column densities and

covering fractions for J0808, J0815 and J1219, for which

no LIS lines are detected in absorption. To estimate the

upper limits on fcov, we calculate the average flux er-

ror per pixel in the normalized spectrum near each Si II

transition and adopt this value as the residual intensity.

For column density upper limits in Table 3, we approxi-

mate the integral in Equation 6 by using three times the

average error per pixel and assuming a line width equal

to the average FWHM of the sample: 225 km/s and 187

km/s for Si II and O I respectively.

4. NEUTRAL GAS IN EXTREME GREEN PEAS

4.1. HI Column Densities

There are significant neutral gas column densities in

GPs with Lyα absorption. Among the eight modeled

GPs, all have logNHI/cm−2 > 17, the optically thin

limit for LyC photons. Seven GPs have column densi-

ties greater than 1020 cm−2. Furthermore, we find ad-

ditional evidence for optically thick gas in the MCMC

models; Doppler parameters have no impact on the

goodness of fit suggesting saturated, damped absorp-

tion. As a result, we find evidence for large neutral gas

reservoirs in all modeled GPs, 75% of which show sig-

nificant Lyα escape as well.

HI column densities are larger on average in GPs with

no Lyα emission. We calculate logNHI/cm−2 & 21.2 for

J1448 and J1335, two sources with Lyα only in absorp-

tion. These GPs also have the highest LIS equivalent

widths seen in the sample, and Si II covering fractions

near unity. However, large HI column densities are not

restricted to fcov ∼ 1. We estimate an HI column den-

sity for J1608 of logNHI/cm−2 = 21.4 and a Si II cover-

ing fraction of fcov = 0.42. Thus, GPs with HI column

densities logNHI/cm−2 > 21 like J1608 are not necessar-

ily ionization-bounded, as would otherwise be expected

from logNHI/cm−2 > 17.

Neutral gas absorbs LyC and scatters Lyα. As a re-

sult, we expect to find greater Lyα escape fractions at

lower HI column densities. To assess this relation with

our entire sample, we estimate NHI using Si II and OI

column densities to supplement our Lyα results. Si II

can be used to estimate a rough HI column density with

each GPs’ oxygen abundance by assuming all Si is in the

form of Si II and on average log(Si/O)=1.59, characteris-

tic of extragalactic HII regions with similar metallicities

to the GPs (Garnett et al. 1995). We do this for each

transition and average the results for every target with

Si II detected in absorption. Individual NHI estimates

from various Si II transitions are typically within 1σ of

each other for a given GP. To estimate NHI from O I

we make a similar assumption but need to use only the

measured 12 + log(O/H). NHI derived from both Si II

and O I are shown in Table 5.

We find that on average, fLyαesc tends to decrease

with greater NHI for each method. Figure 8 compares

fLyαesc with HI column densities derived from Lyα ab-

sorption fitting, Si II, and OI. We find that fLyαesc de-

creases steeply from logNHI/cm−2 = 19.5− 20.5. J1608

is a notable outlier with a high HI column density of

logNHI/cm−2 = 21.39 for its Lyα escape fraction of

only 18%. Otherwise, GPs with logNHI/cm−2 > 20

generally have fLyαesc < 5%. Discrepancies between HI
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Table 5. Derived HI Column Densities from LIS lines

GP logNHI(Si II)/cm−2 logNHI(O I)/cm−2

J1448-01 19.89± 0.26 19.16± 0.25

J1608+35 19.64± 0.25 18.22± 0.31

J1335+08 20.62± 0.34 19.53± 0.60

J1457+22 20.02± 0.25 18.83± 0.58

J1509+37 20.06± 0.22 18.91± 0.15

J0851+21 20.17± 0.31 19.10± 0.42

J0213+00 19.63± 0.27 –

J1226+04 19.59± 0.22 18.65± 0.35

J0240-08 19.62± 0.24 –

J1735+57 19.51± 0.24 18.55± 0.17

J2302+00 19.78± 0.14 –

J1311+00 19.37± 0.30 –

J1200+27 18.98± 0.19 –

J0808+17 – –

J0815+58 – –

J0303-07 20.02± 0.13 19.21± 0.46

J1219+15 – –

column density measurements from different techniques

are discussed in the following section.

4.2. Low-ionization Column Densities and Equivalent

Widths

Low-ionization column densities and equivalent width

ratios are consistent with optically thick gas in our sam-

ple of GPs. In particular, we find that Si II EW ratios

generally disagree with optically thin predictions regard-

less of whether or not Lyα is detected in absorption. The

most robust evidence for saturation comes from absorp-

tion line pairs where fλ ratios differ by at least a factor

of two (Savage & Sembach 1991). Si II λ1193/λ1304 and

λ1260/λ1304 have sufficiently different fiλ
2
i /fjλ

2
j > 5.

In GPs with both transitions detected, these EW ratios

are near unity, and deviate from optically thin predic-

tions by & 3σ. Thus, Si II absorption lines are saturated

and any residual intensity at the line’s core is likely due

to low covering fraction.

Lyα and LIS absorption lines indicate potentially

large NHI along the line of sight, however, derived NHI

values for a given GP can vary significantly between dif-

ferent tracers. Figure 8 shows fLyαesc vs. derived NHI

from Lyα, O I and Si II absorption. Lyα and Si II tend

to agree on large logNHI/cm−2 ∼ 19− 21 within 1σ er-

rors for a given GP, however, the average Si II- (O I)-

derived NHI is offset from Lyα results by ∼ 1 dex (2

dex). On one hand, observing Lyα absorption may be

biased towards the highest NHI systems. Furthermore,

strong Lyα emission could fill in Lyα absorption in GPs

with low fcov and low HI optical depth. Thus, the aver-

age NHI(Lyα) may be greater than that of Si II and O

I by virtue of missing GPs with low NHI. Alternatively,

Si II and O I may underestimate column densities due

to depletion onto dust or radiative infilling, a process

by which saturated absorption line cores are filled in

by LIS photons emitted into the line of sight. Cover-

ing fractions below unity may increase the observed flux

inside absorption lines, decreasing the column density

calculated with Equation 6. For these reasons, and due

to uncertainty on Si/O abundance ratios as well as the

presence of other Si species in the COS spectra, Si II-

derived NHI should be considered as a lower limit.

O I column densities are > 1018 cm−2 when detected

but consistently below NHI estimates from other ab-

sorption lines. Si II λ1260 and O I λ1302 absorption

line strengths should scale similarly due to compara-

ble transition probabilities of the Si II λ1264* and O I

λ1304* lines that relieve the effects of radiative infill-

ing. Correcting column density measurements by each

line’s infilling probability does not resolve the differences

between Si- and O-derived NHI; lines of similar infilling

probability do not agree within 1σ errors. Alternatively,

dust depletion may play an important role even in ex-

tremely ionized conditions (Howk et al. 1999). Jenkins

(2009) finds large oxygen depletion losses compared to

Si in the local Milky Way, which could explain the differ-

ences between Si II and O I derived NHI in the GPs. On

the other hand, we note that the line saturation of O I

is unconstrained by only one observed transition. Thus,

O I λ1302 may not accurately trace the O I column den-

sity. NHI estimates using either O or Si may not agree,

and the use of only one diagnostic may poorly constrain

the neutral gas content.

4.3. Si II Covering Fractions

Rivera-Thorsen et al. (2015) first noticed an anti-

correlation between covering fraction and Lyα escape

fraction in the Lyman Alpha Reference Sample (LARS,
Östlin et al. 2014), a sample of star-forming galaxies

selected for strong Hα and to span a range of UV lumi-

nosities. However, those authors find consistently large

covering fractions & 0.8 for all LARS targets except

LARS 14, which is a GP. To check for consistency, we
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Figure 8. Lyα escape fraction from Jaskot et al. (2017) vs.
HI column density estimated with three different techniques
for the same sample of extreme GPs. Results of MCMC
Voigt fits to Lyα absorption wings are shown in the top panel
as black circles. The vertical dotted black line indicates the
average N(Lyα→HI) value. Blue (red) circles correspond to
Si II (O I) estimates of NHI in the middle (bottom) panel for
GPs with detected LIS absorption lines. The vertical dashed
blue line and dot-dashed red line indicate average values for
N(Si II→HI) and N(O I→HI) respectively.

.

download and analyze the COS spectra for LARS 14

from Program 11727 (PI: Heckman). We measure its Si

II covering fraction to be 0.23 ± 0.08, marginally lower

than the maximum LIS covering fraction of 0.40± 0.05

presented in Rivera-Thorsen et al. (2015). The discrep-

ancy between these numbers is related to differences

in methodology: Rivera-Thorsen et al. (2015) calculate

fcov(v) by averaging Si II, O I and C II absorption pro-

files, whereas this work only considers Si II transitions.

In either case, LARS 14 has a low fcov for its interme-

diate fLyαesc = 0.119.

As shown in the left panel of Figure 9, the GPs’ Si II

covering fractions range from 0.1 − 1, and we find that

fcov anti-correlates with fLyαesc . For reference we also

show measurements from Gazagnes et al. (2018) who

find HI and Si II covering fractions below unity in LCE

GPs. In our sample of extreme GPs, the fLyαesc − fcov

relation is the strongest anti-correlation found between

fLyαesc and other measured properties such as UV/optical

emission line ratios, 12+log(O/H), EW(Lyα), EW(Hα),

and offset velocities of low- and high-ionization metal

absorption lines. ISM porosity plays a critical role in

regulating Lyα photon escape from GPs.

The observed relationship between high fLyαesc and low

fcov is likely affected by the GPs’ orientation along

the line of sight. Simulations find that ionizing pho-

ton escape is highly anisotropic, and that larger es-

cape fractions correspond to larger opening angles (e.g.

Paardekooper et al. 2015). In that case, strong Lyα

emission may correlate with low covering fraction if more

optically thin channels fall in the COS beam. Indeed we

recover this trend in the left panel of Fig. 9.

We compare fcov with NHI from Lyα, Si II and OI in

the right panel of Fig. 9. We do not find evidence for

a strong trend between NHI and Si II covering fraction.

As shown in Fig. 9, GPs with column densities from

Lyα above 1020 cm−2 may preferentially appear at cov-

ering fractions closer to unity. However, we note that

J1608 has one of the highest NHI yet fcov ∼ 0.4, indi-

cating that not all high column density targets need be

completely covered. Si II covering fractions change lit-

tle with HI column density, suggesting that large neutral

gas densities may not be distributed uniformly.

5. DISCUSSION

5.1. Neutral Gas Geometry

Two idealized scenarios limit Lyα escape from dense,

nebular regions. The “picket-fence” model (Heckman

et al. 2011) describes an ionizing source partially cov-

ered by a distribution of optically thick gas clouds. Lyα

photons may still resonantly scatter through optically

thick regions but the emission profile can be dominated

by direct escape (Duval et al. 2014; Verhamme et al.

2015). Metal absorption lines will be saturated, and

Equation 7 describes the residual intensity in the core

of the line. Another possible scenario is the “density-

bounded” or “uniform shell” model in which the ioniz-

ing source is covered completely (fcov = 1) and the ISM

must be optically thin for significant escape.

As shown in Sec. 4.2, the gas densities and line satura-

tion observed in our sample strongly support the picket-

fence model of Lyα escape. Low-ionization line equiva-

lent width ratios disagree with optically thin predictions

for all available transitions in every target. Voigt profile

fits are all insensitive to the Doppler parameter b which

is consistent with saturation on the curve of growth. We

therefore rule out the uniform shell model in our GPs
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Figure 9. (Left) Lyα escape fraction compared to Si II covering fraction. Our data are shown as black circles, with upper
limits on fcov for J0808 and J0815 represented by arrows. Cyan circles are measurements from Gazagnes et al. (2018) for a
sample of GPs. LARS 14 is shown with a magenta square. Haro 11 and Tololo 1247 are shown in red and blue respectively.
Data points surrounded by open markers are confirmed LCEs. J1608 is marked with a × symbol. (Right) HI column density
vs. Si II covering fraction. Separate panels are shown for each technique used to estimate NHI. Data from this work are shown
as circles. HI column densities estimated with MCMC fits to Lyα absorption wings are shown in black. Blue and red indicate
Si II- and O I- derived HI column densities respectively. Gazagnes et al. (2018) GPs are shown as squares, with open markers
indicating LCEs. The dotted horizontal line shows logNHI = 20 on each plot for comparison.

that show metal absorption lines. Some GPs have low

fcov, suggesting that they may be LCEs despite evidence

for optically thick gas.

Within the picket-fence model, Rivera-Thorsen et al.

(2015) put forth two scenarios. A clumpy ISM may con-

sist of clouds moving at a single velocity driven uni-

formly by stellar feedback. In this case, ionizing photons

escape according to the standard picket-fence model

through optically thin channels. An alternate scenario

pictures multiple clouds at different velocities, each only

partially covering the ionizing source yet together cov-

ering it completely. This may arise if Rayleigh-Taylor

instabilities occur in outflows, causing fragmentation at

multiple velocities (e.g. Tenorio-Tagle et al. 1999). Lyα

may scatter to velocities with fcov(v) less than one and

escape out of resonance, in which case the Lyα profile

may have enhanced emission away from systemic veloc-

ity (e.g. Duval et al. 2014). Observing a low-ionization

covering fraction less than unity is still possible because

at any given velocity the clouds do not cover the entire

source.

Low systemic Lyα emission in the COS spectra sug-

gests that low-column density regions must have enough

HI gas to scatter Lyα. Moreover, LIS absorption pro-

files are kinematically aligned across different species,

and offset from line center by < 40 km/s. The stan-

dard deviation of cloud velocities are consistently ≤ 100

km/s. Thus, clouds distributed over a large velocity

range are unlikely, and we favor a picket-fence scenario

with low-column density channels and velocities ≤ 100

km/s.

Evidence for high HI column densities and covering

fractions below unity suggests that Lyα photons scatter

and escape through optically thin channels in the ISM.

We consistently find low Si II covering fractions in tar-

gets with greater fLyαesc . Furthermore the fcov − fLyαesc

correlation is high, suggesting that low fcov may be the

most important criterion for observing Lyα escape in

our sample. This result should be expected if a picket-

fence model with low-column density channels describes

the GPs’ geometry. If this is the case then Lyα escape

is likely anisotropic (e.g. Dove et al. 2000; Gnedin et al.

2008; Zastrow et al. 2011; Cen & Kimm 2015). We spec-

ulate that J1335 and J1448, which have no Lyα emission

along the line of sight, could be Lyα emitters if viewed

from a different angle.

Prior studies have proposed mechanical feedback as

a means of producing low covering fractions. In par-

ticular, supernovae (SNe) may play an important role

in enhancing LyC escape. Clarke & Oey (2002) sug-

gest that quasi-adiabatic SN-driven bubbles are capable

of clearing out HI gas and boosting escape fractions in

regions where the SFR exceeds a critical value. High

resolution hydrodynamic simulations of dwarf galaxies

similarly show that ionizing photons preferentially es-

cape through low column density channels cleared out by
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Figure 10. GP Si II covering fraction vs. vchar, the veloc-
ity weighted by absorption line depth and averaged over all
detected transitions. Our data are shown as black circles.
Cyan points are GP LCEs taken from Chisholm et al. (2017)
and Gazagnes et al. (2018).

SN-driven outflows (Wise & Cen 2009; Trebitsch et al.

2017).

However, recent observational studies suggest that

other feedback mechanisms may be at work in GPs.

HST COS observations of GPs find little or no corre-

lation between outflow velocities and Lyα escape. In a

sample of 10 targets Henry et al. (2015) find no correla-

tion between Lyα escape fractions and outflow velocities

traced by Si II and C II low-ionization transitions. Fur-

thermore, Chisholm et al. (2017) find no extreme veloc-

ities in a sample of LCEs. Jaskot et al. (2017) demon-

strate that while superwind velocities may correlate with

low optical depths in some cases, highly ionized GPs

showing strong, narrow Lyα emission and weak low-

ionization absorption also have the lowest wind veloc-

ities. These extreme GPs require feedback mechanisms

beyond SN-driven outflows, such as radiative feedback

or mechanical feedback from a prior generation of stars

(Micheva et al. 2017).

Figure 10 compares vchar, the Si II velocity weighted

by absorption line depth and averaged over all detected

transitions, with fcov in extreme GPs and GP LCEs.

High covering fractions are exclusively found at low

vchar in our sample, and low covering fractions appear

at negative velocities in some GPs, suggesting that me-

chanical feedback in extreme GPs clears out gas when

present. However, we note that other samples may not

show this trend. For example, Heckman et al. (2011)

find that velocity correlates with low column density in

Lyman Break Analogs (LBAs), evidence for starburst-

driven outflows in compact regions.

A different scenario may produce low covering frac-

tions at low velocity in extreme GPs. For example, Oey

et al. (2017) find suppressed superwinds in the super

star-cluster Mrk 71-A, a GP analog and LCE candidate

likely dominated by radiative feedback. On the other

hand, that system also shows a two-stage starburst with

an older and younger component of ages < 3 − 5 Myr

and . 1 Myr respectively (Micheva et al. 2017). LyC

photons can therefore escape through holes cleared out

during prior epochs of star-formation. In either case,

mechanical feedback from the starburst itself may not

be critical to the escape of Lyα and, potentially, LyC

radiation from extreme GPs. The obscuring gas may be

independent of the GPs’ starburst regions and distant

from the UV sources along the line of sight.

High-resolution simulations find that SFRs in dwarf

galaxies naturally vary on short time scales, which can

lead to strong fluctuations in ionizing photon escape

fractions (e.g. Wise & Cen (2009); Hopkins et al.

(2014); Cen & Kimm (2014); Paardekooper et al. (2015);

Trebitsch et al. (2017)). Consequently, LyC escape frac-

tions are transient and highly anisotropic (e.g. Ma et al.

2015). J1608, a strong LCE candidate, likely harbors

an extremely young stellar population with age . 3− 5

Myr (e.g. Jaskot et al. 2017), driving its high fLyαesc and

O32. J1608’s high ratio of SFR/MHI is also consistent

with a temporary boosting of Hα emission. Further-

more, Jaskot et al. (2017) find a lack of evidence for

outflows in J1608, consistent with the existence of sup-

pressed superwinds. This suggests that SNe have yet

to remove sources of LyC photons, which may manage

to escape this environment. Thus, mechanical feedback

may not have much influence on the surrounding gas

1 − 5 Myr after the starburst, before massive O- and

B-type stars evolve off the main-sequence.

5.2. Does Low fcov Correlate with Predictors of LyC

Escape?

Numerous nebular emission diagnostics have been pro-

posed as indicators of LyC escape and are often used to

select LCE candidates. One such tracer is the Lyα es-

cape fraction, which correlates with LyC escape fraction

in observations and models (e.g. Gronke et al. 2015; Ver-

hamme et al. 2015, 2017). Given that low Si II covering

fractions select high fLyαesc , we now investigate whether or

not fcov scales with other LCE predictors including O32,

the velocity separation of Lyα emission peaks (∆vLyα)

and EW(Lyα).

O32, which depends on the hardness of ionizing radi-

ation and ionization parameter, has been suggested as
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Figure 11. Si II covering fraction compared to various tracers of Lyα escape fractions. Our data are shown as black circles.
Covering fraction upper limits for J0808 and J0815 are indicated with arrows. LARS 14 is shown in magenta and Gazagnes et al.
(2018) GPs are shown in cyan. Circles indicate GPs, and rings denote LCEs. (a) Si II covering fraction vs. O32 = [OIII]/[OII].
(b) Si II covering fraction vs. velocity separation between Lyα emission peaks. A dotted black line connects the two values for
J0808, a triple-peaked system. (c) Si II covering fraction vs. Lyα equivalent width.

a tracer of LyC escape (Jaskot & Oey 2013; Nakajima

& Ouchi 2014). While O32 has been found empirically

to correlate with LyC escape (e.g. Izotov et al. 2016b,

2018b), high O32 does not guarantee high LyC escape

(Izotov et al. 2018a; Naidu et al. 2018). Figure 11a com-

pares fcov and O32. We do not find a correlation between

fcov and O32 in extreme GPs. This scatter may be re-

lated to an orientation bias, if HI gas is distributed inho-

mogeneously around the ionizing star forming regions.

5.3. The Role of Mechanical Feedback

In addition to nebular emission diagnostics, the veloc-

ity separation of double-peaked Lyα profiles may anti-

correlate with LyC and Lyα escape (Verhamme et al.

2015; Henry et al. 2015; Izotov et al. 2018a). As optical

depths increase, Lyα photons must undergo more scat-

tering events to Doppler shift out of resonance. Con-

versely, physical channels through the ISM may facil-

itate Lyα escape with fewer scattering events. Thus,

we might expect that low covering fractions could ap-

pear with low ∆vLyα. We find a possible correlation

between these parameters, with large dispersion (Fig.

11b). Covering fraction is sensitive to the distribution

of high-column density gas, whereas ∆vLyα may pref-

erentially trace lower column density channels and can

also be sensitive to the overall 3D distribution of gas,

not just gas along the line of sight (Jaskot et al. in

prep.). Henry et al. (2015) argue that a strong anti-

correlation between ∆vLyα and fLyαesc in GPs indicates

that HI column density is the dominant factor deter-

mining Lyα escape. However, our results demonstrate

that the relationship between ∆vLyα, NHI and fLyαesc is

likely complicated by non-unity covering fractions.

Lyα equivalent widths are useful in selecting LCE

candidates at high redshift (e.g. Steidel et al. 2018).

Furthermore, we expect to recover a trend between

EW(Lyα) and covering fraction given that greater fLyαesc

naturally implies higher equivalent width. Indeed, Ver-

hamme et al. (2017) find that EW(Lyα) scales with fLyαesc

in GPs and LCEs. In Figure 11c we show that high

EW(Lyα) tends to favor low covering fraction in ex-

treme GPs, although with large scatter. Steidel et al.

(2018) find a similar trend in stacked LAEs at z ∼ 3,

suggesting that EW(Lyα) may be a useful indicator of

neutral gas geometries favorable for ionizing photon es-

cape at higher z.

While we find that high O32, low ∆vLyα and high

EW(Lyα) enhance the probability of measuring low cov-

ering fractions in GPs, no single diagnostic strongly cor-

relates with fcov. Our data indicate that a simple spher-
ical model for ionized regions in GPs is unlikely, and

predictors for LyC escape will likely need to be multidi-

mensional.

6. SUMMARY AND CONCLUSION

We have presented VLA 21cm observations of the

GP J1608+35, which has the largest [O IIIλ5007]/[O

IIλ3727] for SDSS star forming galaxies, and high-

resolution UV COS observations of 17 extreme Green

Pea (GP) galaxies. Significant Lyα emission is detected

in 15 out of 17 targets, with Lyα absorption showing

up in eight of the 17 GPs. High inferred Lyα escape

fractions (fLyαesc ) and large O32 make many of these GPs

good candidates for escaping Lyman continuum radia-

tion. Their study sheds light on the manner in which

Lyα and ionizing radiation escape dense, star-forming

regions. The main results of this paper are as follows.
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We do not detect 21cm emission in J1608, and place a

3σ upper limit on the HI mass of logMHI/M� < 8.14.

This limit is consistent with the HI content of blue

compact dwarfs and HI-selected dwarf galaxies of com-

parable stellar mass. J1608 has an anomalously high

specific star-formation rate for its HI mass, similar to

LyC-emitters Tololo 1247-232 and Haro 11. We con-

strain J1608’s HI mass fraction (fHI ≡ MHI/M∗) to

be ≤ 12.56, falling below predicted values from optical

and UV-derived scaling relations. J1608 is likely ex-

periencing a brief period of intense star-formation. A

young stellar age could boost Hα emission and hence

the Hα-derived SFR, driving the disconnect between

J1608’s observed fHI and predictions from scaling rela-

tions. Like confirmed LyC-emitters, J1608 has an usu-

ally high SFR/MHI , consistent with a scenario where

large ratios of young stars to neutral gas may facilitate

stellar feedback and subsequently LyC escape.

We fit the Lyα absorption wings in the GPs’ COS

spectra and infer HI column densities in the range

∼ 1019−1021 cm−2. These values are 2−4 orders of mag-

nitude above the limiting column density at which gas

becomes optically thick to LyC photons. The presence

of high column densities is also supported by equiva-

lent width and apparent optical depth analyses of low-

ionization absorption lines. Si II absorption lines are

saturated, and NHI estimates from O I are systemati-

cally lower than Si II-derived NHI by a factor of 10 or

more.

Si II covering fractions (fcov), defined as the fraction

of optically thick lines of sight in a beam, are as low

as 0.2 in systems with fLyαesc > 30%. We also find a

significant anti-correlation between fLyαesc and covering

fraction, consistent with the results of Chisholm et al.

(2017) and Gazagnes et al. (2018). In some GPs, we see

both Lyα absorption with HI column densities > 1019

and strong, narrow Lyα emission, implying lower NHI.

A non-uniform gas covering may explain how these ob-

servations appear in the same objects by having opti-

cally thin channels through dense regions in the same

line of sight. Thus, Lyα escape in the GPs may be

anisotropic and detection of Lyα emission could depend

on each target’s orientation to the line of sight.

GPs with covering fractions close to unity show lower

gas outflow velocities in absorption. Low covering frac-

tions appear in GPs over a range of outflow velocities

between −200 < vcen < 0 km s−1 relative to the sys-

temic velocity. We do not find fcov ∼ 1 at large negative

(blue-shifted) velocity in GPs, suggesting that when me-

chanical feedback from the ionizing starburst is present,

it clears out gas. However, low fcov GPs do not all have

strong outflows. While mechanical feedback may op-

erate in some cases, other mechanisms are required to

produce low covering fractions in the galaxies with low

velocities. Potential candidates include radiative feed-

back, as suggested by Jaskot et al. (2017) and Oey et al.

(2017), or a two-stage starburst. Ionizing photon escape

may be optimized in some GPs at young ages 1−5 Myr

after the starburst, where mechanical feedback may not

strongly influence the ISM.

To assess whether or not fcov can select LCE can-

didates, we compare low-ionization covering fractions

against tracers of LyC escape used in the literature. We

find that high O32, high Lyα equivalent widths and low

Lyα peak separation favor low covering fractions and

may therefore increase the probability of selecting LyC-

emitters. However, these relations show significant dis-

persion and no single diagnostic of LyC-escape strongly

correlates with low covering fraction.

The GPs’ gas geometries are complicated and aniso-

tropic; a simple density-bounded sphere is ruled out,

and orientation may be important in determining which

GPs are detected as LyC-emitters. Low Si II covering

fractions are the most important criterion for observing

high fLyαesc in highly ionized GPs, and low covering frac-

tions appear at both low and high gas velocities. Low

density channels may be optically thin to LyC or low-

ionization metal lines like Si II, but not necessarily Lyα.

Low fcov may play an important role in facilitating LyC

escape during the epoch of reionization when neutral gas

densities are greater than those observed today.

We thank the referee for her/his helpful comments, as well
as for suggestions that improved the paper. We are grate-
ful to Hansung Gim and Sarah Betti for their helpful advice
on VLA data reduction. JM, AEJ and MSO acknowledge
support from STScI grant HST-GO-14080. AEJ acknowl-
edges support by NASA through Hubble Fellowship grant
HST-HF2-51392. STScI is operated by AURA under NASA
contract NAS-5-26555. TD acknowledges support from the
Massachusetts Space Grant Consortium. Funding for the
Sloan Digital Sky Survey IV has been provided by the Alfred
P. Sloan Foundation, the U.S. Department of Energy Office
of Science, and the Participating Institutions. SDSS-IV ac-
knowledges support and resources from the Center for High-
Performance Computing at the University of Utah. The
SDSS web site is www.sdss.org. The National Radio As-
tronomy Observatory is a facility of the National Science
Foundation operated under cooperative agreement by Asso-
ciated Universities, Inc.

REFERENCES

Ahn, C. P., Alexandroff, R., Allende Prieto, C., et al. 2014,

ApJS, 211, 17, doi: 10.1088/0067-0049/211/2/17

Cardamone, C., Schawinski, K., Sarzi, M., et al. 2009,

MNRAS, 399, 1191,

doi: 10.1111/j.1365-2966.2009.15383.x

http://doi.org/10.1088/0067-0049/211/2/17
http://doi.org/10.1111/j.1365-2966.2009.15383.x


20

Cardelli, J. A., Clayton, G. C., & Mathis, J. S. 1989, ApJ,

345, 245, doi: 10.1086/167900

Cen, R., & Kimm, T. 2014, ApJ, 794, 50,

doi: 10.1088/0004-637X/794/1/50

—. 2015, ApJL, 801, L25,

doi: 10.1088/2041-8205/801/2/L25
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Izotov, Y. I., Orlitová, I., Schaerer, D., et al. 2016a, Nature,

529, 178, doi: 10.1038/nature16456

Izotov, Y. I., Schaerer, D., Thuan, T. X., et al. 2016b,

MNRAS, 461, 3683, doi: 10.1093/mnras/stw1205

Izotov, Y. I., Schaerer, D., Worseck, G., et al. 2018a,

MNRAS, 474, 4514, doi: 10.1093/mnras/stx3115

Izotov, Y. I., Thuan, T. X., & Guseva, N. G. 2017,

MNRAS, 471, 548, doi: 10.1093/mnras/stx1629

Izotov, Y. I., Worseck, G., Schaerer, D., et al. 2018b,

MNRAS, 478, 4851, doi: 10.1093/mnras/sty1378

Jaskot, A. E., Dowd, T., Oey, M. S., Scarlata, C., &

McKinney, J. in prep.

Jaskot, A. E., & Oey, M. S. 2013, ApJ, 766, 91,

doi: 10.1088/0004-637X/766/2/91

Jaskot, A. E., Oey, M. S., Scarlata, C., & Dowd, T. 2017,

ApJL, 851, L9, doi: 10.3847/2041-8213/aa9d83

Jenkins, E. B. 2009, ApJ, 700, 1299,

doi: 10.1088/0004-637X/700/2/1299

Kennicutt, Jr., R. C. 1998, ApJ, 498, 541,

doi: 10.1086/305588

Luridiana, V., Morisset, C., & Shaw, R. A. 2015, A&A,

573, A42, doi: 10.1051/0004-6361/201323152

Ma, X., Kasen, D., Hopkins, P. F., et al. 2015, MNRAS,

453, 960, doi: 10.1093/mnras/stv1679

Madau, P., & Haardt, F. 2015, ApJL, 813, L8,

doi: 10.1088/2041-8205/813/1/L8

McMullin, J. P., Waters, B., Schiebel, D., Young, W., &

Golap, K. 2007, in Astronomical Society of the Pacific

Conference Series, Vol. 376, Astronomical Data Analysis

Software and Systems XVI, ed. R. A. Shaw, F. Hill, &

D. J. Bell, 127

McQuinn, K. B. W., Skillman, E. D., Cannon, J. M., et al.

2010, ApJ, 724, 49, doi: 10.1088/0004-637X/724/1/49

Micheva, G., Oey, M. S., Jaskot, A. E., & James, B. L.

2017, ApJ, 845, 165, doi: 10.3847/1538-4357/aa830b

Naidu, R. P., Forrest, B., Oesch, P. A., Tran, K.-V. H., &

Holden, B. P. 2018, MNRAS, 478, 791,

doi: 10.1093/mnras/sty961

Nakajima, K., & Ouchi, M. 2014, MNRAS, 442, 900,

doi: 10.1093/mnras/stu902

http://doi.org/10.1086/167900
http://doi.org/10.1088/0004-637X/794/1/50
http://doi.org/10.1088/2041-8205/801/2/L25
http://doi.org/10.1051/0004-6361/201730610
https://arxiv.org/abs/1803.03655
http://doi.org/10.1046/j.1365-8711.2002.05976.x
http://doi.org/10.1086/300337
http://doi.org/10.1086/308481
http://doi.org/10.1051/0004-6361/201220455
http://doi.org/10.1088/0004-6256/142/3/72
http://doi.org/10.1017/pasa.2017.51
http://doi.org/10.1086/316293
http://doi.org/10.1093/mnras/stt2332
http://doi.org/10.1111/j.1365-2966.2012.21594.x
http://doi.org/10.1086/670067
http://doi.org/10.1086/309620
https://arxiv.org/abs/1802.06378
http://doi.org/10.1051/0004-6361/201425334
http://doi.org/10.1086/524007
http://doi.org/10.1088/0004-637X/812/2/123
http://doi.org/10.1086/322475
http://doi.org/10.1088/0004-637X/730/1/5
http://doi.org/10.1088/0004-637X/809/1/19
http://doi.org/10.1093/mnras/stu1738
http://doi.org/10.1086/307888
http://doi.org/10.1088/0004-637X/756/2/113
http://doi.org/10.1088/0004-6256/143/6/133
http://doi.org/10.1088/0004-637X/728/2/161
http://doi.org/10.1038/nature16456
http://doi.org/10.1093/mnras/stw1205
http://doi.org/10.1093/mnras/stx3115
http://doi.org/10.1093/mnras/stx1629
http://doi.org/10.1093/mnras/sty1378
http://doi.org/10.1088/0004-637X/766/2/91
http://doi.org/10.3847/2041-8213/aa9d83
http://doi.org/10.1088/0004-637X/700/2/1299
http://doi.org/10.1086/305588
http://doi.org/10.1051/0004-6361/201323152
http://doi.org/10.1093/mnras/stv1679
http://doi.org/10.1088/2041-8205/813/1/L8
http://doi.org/10.1088/0004-637X/724/1/49
http://doi.org/10.3847/1538-4357/aa830b
http://doi.org/10.1093/mnras/sty961
http://doi.org/10.1093/mnras/stu902


21

Newville, M., Stensitzki, T., Allen, D. B., & Ingargiola, A.

2014, LMFIT: Non-Linear Least-Square Minimization

and Curve-Fitting for Python,

doi: 10.5281/zenodo.11813.

https://doi.org/10.5281/zenodo.11813

Oey, M. S., Herrera, C. N., Silich, S., et al. 2017, ApJL,

849, L1, doi: 10.3847/2041-8213/aa9215
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