15 research outputs found

    The Life Story of Josh Mathews

    Get PDF
    This story is about the hard times in Josh Matthews\u27 life. When he was 5 years old he lost his mother in his life and it took him down a horrible road. All he did was eat and eat and eat until he was diagnosed with type 2 diabetes. Now josh has to gain control back of his life so he doesn\u27t get more overweight and possibly die. Travel throw the scenarios to see if josh makes it or if he doesn\u27t??

    Acquisition Reform

    Get PDF
    This report reviews the six most recent major acquisition reform reports, starting in 1949 with the Hoover Commissions and including McNamara's Total Package Procurement, Fitzhugh Commission, the Commission on Government Procurement,the Grace Commission, and ending with the Packard Commission report in 1986. The reports' recommendations are devided into six areas: centralized procurement, professionalization of the acquisition corps, management improvements, changes in contracting procedures, new development strategies, and legislative/executive relations.Lean Aerospace Initiativ

    Symmetry-breaking and chaos in electron transport in semiconductor superlattices

    Get PDF
    We study the motion of electrons in a single miniband of a semiconductor superlattice driven by THz electric field polarized along the growth direction. We work in the semiclassical balance-equation model, including different elastic and inelastic scattering rates, and incorporating the self-consistent electric field generated by electron motion. We explore regions of complex dynamics, which can include chaotic behaviour and symmetry-breaking. We estimate the magnitudes of dc current and dc voltage that spontaneously appear in regions of broken-symmetry for parameters characteristic of modern semiconductor superlattices. This work complements PRL 80(1998)2669 [ cond-mat/9709026 ].Comment: 4 pages, 3 figures, RevTEX, EPS

    Spontaneous DC Current Generation in a Resistively Shunted Semiconductor Superlattice Driven by a TeraHertz Field

    Get PDF
    We study a resistively shunted semiconductor superlattice subject to a high-frequency electric field. Using a balance equation approach that incorporates the influence of the electric circuit, we determine numerically a range of amplitude and frequency of the ac field for which a dc bias and current are generated spontaneously and show that this region is likely accessible to current experiments. Our simulations reveal that the Bloch frequency corresponding to the spontaneous dc bias is approximately an integer multiple of the ac field frequency.Comment: 8 pages, Revtex, 3 Postscript figure

    Theory and Applications of Non-Relativistic and Relativistic Turbulent Reconnection

    Full text link
    Realistic astrophysical environments are turbulent due to the extremely high Reynolds numbers. Therefore, the theories of reconnection intended for describing astrophysical reconnection should not ignore the effects of turbulence on magnetic reconnection. Turbulence is known to change the nature of many physical processes dramatically and in this review we claim that magnetic reconnection is not an exception. We stress that not only astrophysical turbulence is ubiquitous, but also magnetic reconnection itself induces turbulence. Thus turbulence must be accounted for in any realistic astrophysical reconnection setup. We argue that due to the similarities of MHD turbulence in relativistic and non-relativistic cases the theory of magnetic reconnection developed for the non-relativistic case can be extended to the relativistic case and we provide numerical simulations that support this conjecture. We also provide quantitative comparisons of the theoretical predictions and results of numerical experiments, including the situations when turbulent reconnection is self-driven, i.e. the turbulence in the system is generated by the reconnection process itself. We show how turbulent reconnection entails the violation of magnetic flux freezing, the conclusion that has really far reaching consequences for many realistically turbulent astrophysical environments. In addition, we consider observational testing of turbulent reconnection as well as numerous implications of the theory. The former includes the Sun and solar wind reconnection, while the latter include the process of reconnection diffusion induced by turbulent reconnection, the acceleration of energetic particles, bursts of turbulent reconnection related to black hole sources as well as gamma ray bursts. Finally, we explain why turbulent reconnection cannot be explained by turbulent resistivity or derived through the mean field approach.Comment: 66 pages, 24 figures, a chapter of the book "Magnetic Reconnection - Concepts and Applications", editors W. Gonzalez, E. N. Parke

    Symmetry-breaking and chaos in electron transport in semiconductor superlattices

    Full text link
    We study the motion of electrons in a single miniband of a semiconductor superlattice driven by THz electric field polarized along the growth direction. We work in the semiclassical balance-equation model, including different elastic and inelastic scattering rates, and incorporating the self-consistent electric field generated by electron motion. We explore regions of complex dynamics, which can include chaotic behaviour and symmetry-breaking. We estimate the magnitudes of dc current and dc voltage that spontaneously appear in regions of broken-symmetry for parameters characteristic of modern semiconductor superlattices. This work complements PRL 80(1998)2669 [ cond-mat/9709026 ]

    Integrating spatial and temporal approaches to understanding species richness

    Get PDF
    Understanding species richness patterns represents one of the most fundamental problems in ecology. Most research in this area has focused on spatial gradients of species richness, with a smaller area of emphasis dedicated to understanding the temporal dynamics of richness. However, few attempts have been made to understand the linkages between the spatial and temporal patterns related to richness. Here, we argue that spatial and temporal richness patterns and the processes that drive them are inherently linked, and that our understanding of richness will be substantially improved by considering them simultaneously. The species–time–area relationship provides a case in point: successful description of the empirical spatio-temporal pattern led to a rapid development and testing of new theories. Other areas of research on species richness could also benefit from an explicitly spatio-temporal approach, and we suggest future directions for understanding the processes common to these two traditionally isolated fields of research

    Clinical impact of PSMA-based \u3csup\u3e18\u3c/sup\u3eF–DCFBC PET/CT imaging in patients with biochemically recurrent prostate cancer after primary local therapy

    No full text
    © 2017, US Government (outside the USA). Purpose: The purpose of our study was to assess 18F–DCFBC PET/CT, a PSMA targeted PET agent, for lesion detection and clinical management of biochemical relapse in prostate cancer patients after primary treatment. Methods: This is a prospective IRB-approved study of 68 patients with documented biochemical recurrence after primary local therapy consisting of radical prostatectomy (n = 50), post radiation therapy (n = 9) or both (n = 9), with negative conventional imaging. All 68 patients underwent whole-body 18F–DCFBC PET/CT, and 62 also underwent mpMRI within one month. Lesion detection with 18F–DCFBC was correlated with mpMRI findings and pre-scan PSA levels. The impact of 18F–DCFBC PET/CT on clinical management and treatment decisions was established after 6 months’ patient clinical follow-up. Results: Forty-one patients (60.3%) showed at least one positive 18F–DCFBC lesion, for a total of 79 lesions, 30 in the prostate bed, 39 in lymph nodes, and ten in distant sites. Tumor recurrence was confirmed by either biopsy (13/41 pts), serial CT/MRI (8/41) or clinical follow-up (15/41); there was no confirmation in five patients, who continue to be observed. The 18F–DCFBC and mpMRI findings were concordant in 39 lesions (49.4%), and discordant in 40 lesions (50.6%); the majority (n = 32/40) of the latter occurring because the recurrence was located outside the mpMRI field of view. 18F–DCFBC PET positivity rates correlated with PSA values and 15%, 46%, 83%, and 77% were seen in patients with PSA values \u3c0.5, 0.5 to \u3c1.0, 1.0 to \u3c2.0, and ≥2.0 ng/mL, respectively. The optimal cut-off PSA value to predict a positive 18F–DCFBC scan was 0.78 ng/mL (AUC = 0.764). A change in clinical management occurred in 51.2% (21/41) of patients with a positive 18F–DCFBC result, generally characterized by starting a new treatment in 19 patients or changing the treatment plan in two patients. Conclusions: 18F–DCFBC detects recurrences in 60.3% of a population of patients with biochemical recurrence, but results are dependent on PSA levels. Above a threshold PSA value of 0.78 ng/mL, 18F–DCFBC was able to identify recurrence with high reliability. Positive 18F–DCFBC PET imaging led clinicians to change treatment strategy in 51.2% of patients

    Genomic basis of European ash tree resistance to ash dieback fungus

    No full text
    Populations of European ash trees (Fraxinus excelsior) are being devastated by the invasive alien fungus Hymenoscyphus fraxineus, which causes ash dieback. We sequenced whole genomic DNA from 1,250 ash trees in 31 DNA pools, each pool containing trees with the same ash dieback damage status in a screening trial and from the same seed-source zone. A genome-wide association study identified 3,149 single nucleotide polymorphisms (SNPs) associated with low versus high ash dieback damage. Sixty-one of the 192 most significant SNPs were in, or close to, genes with putative homologues already known to be involved in pathogen responses in other plant species. We also used the pooled sequence data to train a genomic prediction model, cross-validated using individual whole genome sequence data generated for 75 healthy and 75 damaged trees from a single seed source. The model’s genomic estimated breeding values (GEBVs) allocated these 150 trees to their observed health statuses with 67% accuracy using 10,000 SNPs. Using the top 20% of GEBVs from just 200 SNPs, we could predict observed tree health with over 90% accuracy. We infer that ash dieback resistance in F. excelsior is a polygenic trait that should respond well to both natural selection and breeding, which could be accelerated using genomic prediction
    corecore