17 research outputs found

    The Life Story of Josh Mathews

    Get PDF
    This story is about the hard times in Josh Matthews\u27 life. When he was 5 years old he lost his mother in his life and it took him down a horrible road. All he did was eat and eat and eat until he was diagnosed with type 2 diabetes. Now josh has to gain control back of his life so he doesn\u27t get more overweight and possibly die. Travel throw the scenarios to see if josh makes it or if he doesn\u27t??

    Acquisition Reform

    Get PDF
    This report reviews the six most recent major acquisition reform reports, starting in 1949 with the Hoover Commissions and including McNamara's Total Package Procurement, Fitzhugh Commission, the Commission on Government Procurement,the Grace Commission, and ending with the Packard Commission report in 1986. The reports' recommendations are devided into six areas: centralized procurement, professionalization of the acquisition corps, management improvements, changes in contracting procedures, new development strategies, and legislative/executive relations.Lean Aerospace Initiativ

    Symmetry-breaking and chaos in electron transport in semiconductor superlattices

    Get PDF
    We study the motion of electrons in a single miniband of a semiconductor superlattice driven by THz electric field polarized along the growth direction. We work in the semiclassical balance-equation model, including different elastic and inelastic scattering rates, and incorporating the self-consistent electric field generated by electron motion. We explore regions of complex dynamics, which can include chaotic behaviour and symmetry-breaking. We estimate the magnitudes of dc current and dc voltage that spontaneously appear in regions of broken-symmetry for parameters characteristic of modern semiconductor superlattices. This work complements PRL 80(1998)2669 [ cond-mat/9709026 ].Comment: 4 pages, 3 figures, RevTEX, EPS

    Spontaneous DC Current Generation in a Resistively Shunted Semiconductor Superlattice Driven by a TeraHertz Field

    Get PDF
    We study a resistively shunted semiconductor superlattice subject to a high-frequency electric field. Using a balance equation approach that incorporates the influence of the electric circuit, we determine numerically a range of amplitude and frequency of the ac field for which a dc bias and current are generated spontaneously and show that this region is likely accessible to current experiments. Our simulations reveal that the Bloch frequency corresponding to the spontaneous dc bias is approximately an integer multiple of the ac field frequency.Comment: 8 pages, Revtex, 3 Postscript figure

    Theory and Applications of Non-Relativistic and Relativistic Turbulent Reconnection

    Full text link
    Realistic astrophysical environments are turbulent due to the extremely high Reynolds numbers. Therefore, the theories of reconnection intended for describing astrophysical reconnection should not ignore the effects of turbulence on magnetic reconnection. Turbulence is known to change the nature of many physical processes dramatically and in this review we claim that magnetic reconnection is not an exception. We stress that not only astrophysical turbulence is ubiquitous, but also magnetic reconnection itself induces turbulence. Thus turbulence must be accounted for in any realistic astrophysical reconnection setup. We argue that due to the similarities of MHD turbulence in relativistic and non-relativistic cases the theory of magnetic reconnection developed for the non-relativistic case can be extended to the relativistic case and we provide numerical simulations that support this conjecture. We also provide quantitative comparisons of the theoretical predictions and results of numerical experiments, including the situations when turbulent reconnection is self-driven, i.e. the turbulence in the system is generated by the reconnection process itself. We show how turbulent reconnection entails the violation of magnetic flux freezing, the conclusion that has really far reaching consequences for many realistically turbulent astrophysical environments. In addition, we consider observational testing of turbulent reconnection as well as numerous implications of the theory. The former includes the Sun and solar wind reconnection, while the latter include the process of reconnection diffusion induced by turbulent reconnection, the acceleration of energetic particles, bursts of turbulent reconnection related to black hole sources as well as gamma ray bursts. Finally, we explain why turbulent reconnection cannot be explained by turbulent resistivity or derived through the mean field approach.Comment: 66 pages, 24 figures, a chapter of the book "Magnetic Reconnection - Concepts and Applications", editors W. Gonzalez, E. N. Parke

    Search for eccentric black hole coalescences during the third observing run of LIGO and Virgo

    Get PDF
    Despite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that were already identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total mass M>70 M⊙) binaries covering eccentricities up to 0.3 at 15 Hz orbital frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place an upper limit for the merger rate density of high-mass binaries with eccentricities 0<e≤0.3 at 0.33 Gpc−3 yr−1 at 90\% confidence level

    Ultralight vector dark matter search using data from the KAGRA O3GK run

    Get PDF
    Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we present the result of a search for U(1)B−L gauge boson DM using the KAGRA data from auxiliary length channels during the first joint observation run together with GEO600. By applying our search pipeline, which takes into account the stochastic nature of ultralight DM, upper bounds on the coupling strength between the U(1)B−L gauge boson and ordinary matter are obtained for a range of DM masses. While our constraints are less stringent than those derived from previous experiments, this study demonstrates the applicability of our method to the lower-mass vector DM search, which is made difficult in this measurement by the short observation time compared to the auto-correlation time scale of DM

    Symmetry-breaking and chaos in electron transport in semiconductor superlattices

    Full text link
    We study the motion of electrons in a single miniband of a semiconductor superlattice driven by THz electric field polarized along the growth direction. We work in the semiclassical balance-equation model, including different elastic and inelastic scattering rates, and incorporating the self-consistent electric field generated by electron motion. We explore regions of complex dynamics, which can include chaotic behaviour and symmetry-breaking. We estimate the magnitudes of dc current and dc voltage that spontaneously appear in regions of broken-symmetry for parameters characteristic of modern semiconductor superlattices. This work complements PRL 80(1998)2669 [ cond-mat/9709026 ]

    Integrating spatial and temporal approaches to understanding species richness

    Get PDF
    Understanding species richness patterns represents one of the most fundamental problems in ecology. Most research in this area has focused on spatial gradients of species richness, with a smaller area of emphasis dedicated to understanding the temporal dynamics of richness. However, few attempts have been made to understand the linkages between the spatial and temporal patterns related to richness. Here, we argue that spatial and temporal richness patterns and the processes that drive them are inherently linked, and that our understanding of richness will be substantially improved by considering them simultaneously. The species–time–area relationship provides a case in point: successful description of the empirical spatio-temporal pattern led to a rapid development and testing of new theories. Other areas of research on species richness could also benefit from an explicitly spatio-temporal approach, and we suggest future directions for understanding the processes common to these two traditionally isolated fields of research
    corecore