152 research outputs found
Extrinsic and intrinsic determinants of nerve regeneration
After central nervous system (CNS) injury axons fail to regenerate often leading to persistent neurologic deficit although injured peripheral nervous system (PNS) axons mount a robust regenerative response that may lead to functional recovery. Some of the failures of CNS regeneration arise from the many glial-based inhibitory molecules found in the injured CNS, whereas the intrinsic regenerative potential of some CNS neurons is actively curtailed during CNS maturation and limited after injury. In this review, the molecular basis for extrinsic and intrinsic modulation of axon regeneration within the nervous system is evaluated. A more complete understanding of the factors limiting axonal regeneration will provide a rational basis, which is used to develop improved treatments for nervous system injury
Effects of rapid thermal annealing on device characteristics of InGaAs/GaAs quantum dot infrared photodetectors
In this work, rapid thermal annealing was performed on InGaAs/GaAs quantum dot infrared photodetectors (QDIPs) at different temperatures. The photoluminescence showed a blueshifted spectrum in comparison with the as-grown sample when the annealing temperature was higher than 700 °C, as a result of thermal interdiffusion of the quantum dots (QDs). Correspondingly, the spectral response from the annealed QDIP exhibited a redshift. At the higher annealing temperature of 800 °C, in addition to the largely redshifted photoresponse peak of 7.4 µm (compared with the 6.1 µm of the as-grown QDIP), a high energy peak at 5.6 µm (220 meV) was also observed, leading to a broad spectrum linewidth of 40%. This is due to the large interdiffusion effect which could greatly vary the composition of the QDs and thus increase the relative optical absorption intensity at higher energy. The other important detector characteristics such as dark current, peak responsivity, and detectivity were also measured. It was found that the overall device performance was not affected by low annealing temperature, however, for high annealing temperature, some degradation in device detectivity (but not responsivity) was observed. This is a consequence of increased dark current due to defect formation and increased ground state energy. © 2006 American Institute of Physic
Sustained Delivery of Activated Rho GTPases and BDNF Promotes Axon Growth in CSPG-Rich Regions Following Spinal Cord Injury
Background: Spinal cord injury (SCI) often results in permanent functional loss. This physical trauma leads to secondary events, such as the deposition of inhibitory chondroitin sulfate proteoglycan (CSPG) within astroglial scar tissue at the lesion. Methodology/Principal Findings: We examined whether local delivery of constitutively active (CA) Rho GTPases, Cdc42 and Rac1 to the lesion site alleviated CSPG-mediated inhibition of regenerating axons. A dorsal over-hemisection lesion was created in the rat spinal cord and the resulting cavity was conformally filled with an in situ gelling hydrogel combined with lipid microtubes that slowly released constitutively active (CA) Cdc42, Rac1, or Brain-derived neurotrophic factor (BDNF). Treatment with BDNF, CA-Cdc42, or CA-Rac1 reduced the number of GFAP-positive astrocytes, as well as CSPG deposition, at the interface of the implanted hydrogel and host tissue. Neurofilament 160kDa positively stained axons traversed the glial scar extensively, entering the hydrogel-filled cavity in the treatments with BDNF and CA-Rho GTPases. The treated animals had a higher percentage of axons from the corticospinal tract that traversed the CSPG-rich regions located proximal to the lesion site. Conclusion: Local delivery of CA-Cdc42, CA-Rac1, and BDNF may have a significant therapeutic role in overcoming CSPGmediate
ccdc80-l1 Is Involved in Axon Pathfinding of Zebrafish Motoneurons
Axon pathfinding is a subfield of neural development by which neurons send out axons to reach the correct targets. In particular, motoneurons extend their axons toward skeletal muscles, leading to spontaneous motor activity. In this study, we identified the zebrafish Ccdc80 and Ccdc80-like1 (Ccdc80-l1) proteins in silico on the basis of their high aminoacidic sequence identity with the human CCDC80 (Coiled-Coil Domain Containing 80). We focused on ccdc80-l1 gene that is expressed in nervous and non-nervous tissues, in particular in territories correlated with axonal migration, such as adaxial cells and muscle pioneers. Loss of ccdc80-l1 in zebrafish embryos induced motility issues, although somitogenesis and myogenesis were not impaired. Our results strongly suggest that ccdc80-l1 is involved in axon guidance of primary and secondary motoneurons populations, but not in their proper formation. ccdc80-l1 has a differential role as regards the development of ventral and dorsal motoneurons, and this is consistent with the asymmetric distribution of the transcript. The axonal migration defects observed in ccdc80-l1 loss-of-function embryos are similar to the phenotype of several mutants with altered Hedgehog activity. Indeed, we reported that ccdc80-l1 expression is positively regulated by the Hedgehog pathway in adaxial cells and muscle pioneers. These findings strongly indicate ccdc80-l1 as a down-stream effector of the Hedgehog pathway
Aqueous batteries as grid scale energy storage solutions
Energy storage technologies are required to make full use of renewable energy sources, and electrochemical
cells offer a great deal flexibility in the design of energy systems. For large scale electrochemical
storage to be viable, the materials employed and device production methods need to be low cost, devices
should be long lasting and safety during operation is of utmost importance. Energy and power densities
are of lesser concern. For these reasons, battery chemistries that make use of aqueous electrolytes are
favorable candidates where large quantities of energy need to be stored. Herein we describe several
different aqueous based battery chemistries and identify some of the research challenges currently
hindering their wider adoption. Lead acid batteries represent a mature technology that currently dominates
the battery market, however there remain challenges that may prevent their future use at the
large scale. Nickel–iron batteries have received a resurgence of interest of late and are known for their
long cycle lives and robust nature however improvements in efficiency are needed in order to make them
competitive. Other technologies that use aqueous electrolytes and have the potential to be useful in
future large-scale applications are briefly introduced. Recent investigations in to the design of nickel–iron
cells are reported with it being shown that electrolyte decomposition can be virtually eliminated by
employing relatively large concentrations of iron sulfide in the electrode mixture, however this is at the
expense of capacity and cycle life
Recommended from our members
Ultraviolet and Visible Imaging and Spectrographic Imaging (UVISI) Data Processing Center (DPC)
International Telemetering Conference Proceedings / October 28-31, 1996 / Town and Country Hotel and Convention Center, San Diego, CaliforniaThe nine sensors and one image processor of the Ultraviolet and Visible Imaging and Spectrographic Imaging (UVISI) instrument aboard the Midcourse Space Experiment (MSX) satellite can potentially generate up to three gigabytes of data of data per day. The UVISI Data Processing Center (DPC) must execute a multitude of complex processing functions in a 24-hour operational window, verify the UVISI data and also provide a compact, quantified record of the verification. The Center additionally must support higher-level data analysis functions. Data processing functions are divided into pipeline processing and data conversion processing. Pipeline processing, which consists of the main pipeline process, Pipeline, and several auxiliary processes is responsible for generating Data Quality Indices (DQI) that summarize sensor performance and Data Measurement Indices (DMI) that summarize sensor measurements. Both sets of indices provide scientists and engineers with a compact, easily-reviewed record of instrument performance. The conversion process, Convert, supports data analysis by converting raw telemetry into scientific/engineering units. On a pixel-by-pixel basis, Convert provides functions for dark-correction, flat-fielding, gain and gate adjustment, non-linearity correction, and count-to-photon conversion. Operating in conjunction with Convert, a pointing utility, Point, is used to determine the locations of selected objects in inertial space. The accomplishment of these myriad tasks relies on a state-of-the-art computer network using multiple workstations. Normal DPC operations are fully automated but remain flexible enough to allow prompt intervention by the UVISI Performance Assessment Team (PAT).International Foundation for TelemeteringProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection
Antenatal steroid exposure in the late preterm period is associated with reduced cord blood neurotrophin-3
Abstract not availableNicolette A. Hodyl, Tara M. Crawford, Lorna McKerracher, Andrew Lawrence, Julia B. Pitcher, Michael J. Star
- …