CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
research
Effects of rapid thermal annealing on device characteristics of InGaAs/GaAs quantum dot infrared photodetectors
Authors
C. Jagadish
H. H. Tan
+8 more
I. McKerracher
J. Wong-Leung
L. Fu
Lever P.
Li E. H.
Liu H. C.
N. Vukmirović
P. Harrison
Publication date
1 June 2006
Publisher
'AIP Publishing'
Doi
Cite
Abstract
In this work, rapid thermal annealing was performed on InGaAs/GaAs quantum dot infrared photodetectors (QDIPs) at different temperatures. The photoluminescence showed a blueshifted spectrum in comparison with the as-grown sample when the annealing temperature was higher than 700 °C, as a result of thermal interdiffusion of the quantum dots (QDs). Correspondingly, the spectral response from the annealed QDIP exhibited a redshift. At the higher annealing temperature of 800 °C, in addition to the largely redshifted photoresponse peak of 7.4 µm (compared with the 6.1 µm of the as-grown QDIP), a high energy peak at 5.6 µm (220 meV) was also observed, leading to a broad spectrum linewidth of 40%. This is due to the large interdiffusion effect which could greatly vary the composition of the QDs and thus increase the relative optical absorption intensity at higher energy. The other important detector characteristics such as dark current, peak responsivity, and detectivity were also measured. It was found that the overall device performance was not affected by low annealing temperature, however, for high annealing temperature, some degradation in device detectivity (but not responsivity) was observed. This is a consequence of increased dark current due to defect formation and increased ground state energy. © 2006 American Institute of Physic
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Crossref
See this paper in CORE
Go to the repository landing page
Download from data provider
Last time updated on 03/01/2020
The Australian National University
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:openresearch-repository.an...
Last time updated on 25/04/2018
White Rose Research Online
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:eprints.whiterose.ac.uk:16...
Last time updated on 28/06/2012