6,987 research outputs found

    Shuttle Ku-band signal design study

    Get PDF
    Carrier synchronization and data demodulation of Unbalanced Quadriphase Shift Keyed (UQPSK) Shuttle communications' signals by optimum and suboptimum methods are discussed. The problem of analyzing carrier reconstruction techniques for unbalanced QPSK signal formats is addressed. An evaluation of the demodulation approach of the Ku-Band Shuttle return link for UQPSK when the I-Q channel power ratio is large is carried out. The effects that Shuttle rocket motor plumes have on the RF communications are determined also. The effect of data asymmetry on bit error probability is discussed

    Propagation properties of Rossby waves for latitudinal β-plane variations of <I>f</I> and zonal variations of the shallow water speed

    Get PDF
    Using the shallow water equations for a rotating layer of fluid, the wave and dispersion equations for Rossby waves are developed for the cases of both the standard β-plane approximation for the latitudinal variation of the Coriolis parameter <I>f</I> and a zonal variation of the shallow water speed. It is well known that the wave normal diagram for the standard (mid-latitude) Rossby wave on a β-plane is a circle in wave number (<I>k</I><sub>y</sub>,<I>k</I><sub>x</sub>) space, whose centre is displaced &minus;&beta;/2 &omega; units along the negative <I>k</I><sub>x</sub> axis, and whose radius is less than this displacement, which means that phase propagation is entirely westward. This form of anisotropy (arising from the latitudinal <I>y</I> variation of <I>f</I>), combined with the highly dispersive nature of the wave, gives rise to a group velocity diagram which permits eastward as well as westward propagation. It is shown that the group velocity diagram is an ellipse, whose centre is displaced westward, and whose major and minor axes give the maximum westward, eastward and northward (southward) group speeds as functions of the frequency and a parameter <I>m</I> which measures the ratio of the low frequency-long wavelength Rossby wave speed to the shallow water speed. We believe these properties of group velocity diagram have not been elucidated in this way before. We present a similar derivation of the wave normal diagram and its associated group velocity curve for the case of a zonal (<I>x</I>) variation of the shallow water speed, which may arise when the depth of an ocean varies zonally from a continental shelf

    Shuttle/TDRSS modelling and link simulation study

    Get PDF
    A Shuttle/TDRSS S-band and Ku-band link simulation package called LinCsim was developed for the evaluation of link performance for specific Shuttle signal designs. The link models were described in detail and the transmitter distortion parameters or user constraints were carefully defined. The overall link degradation (excluding hardware degradations) relative to an ideal BPSK channel were given for various sets of user constraint values. The performance sensitivity to each individual user constraint was then illustrated. The effect of excessive Spacelab clock jitter on the return link BER performance was also investigated as was the problem of subcarrier recovery for the K-band Shuttle return link signal

    Ku-band system design study and TDRSS interface analysis

    Get PDF
    The capabilities of the Shuttle/TDRSS link simulation program (LinCsim) were expanded to account for radio frequency interference (RFI) effects on the Shuttle S-band links, the channel models were updated to reflect the RFI related hardware changes, the ESTL hardware modeling of the TDRS communication payload was reviewed and evaluated, in LinCsim the Shuttle/TDRSS signal acquisition was modeled, LinCsim was upgraded, and possible Shuttle on-orbit navigation techniques was evaluated

    Ferromagnetism, paramagnetism and a Curie-Weiss metal in an electron doped Hubbard model on a triangular lattice

    Get PDF
    Motivated by the unconventional properties and rich phase diagram of NaxCoO2 we consider the electronic and magnetic properties of a two-dimensional Hubbard model on an isotropic triangular lattice doped with electrons away from half-filling. Dynamical mean-field theory (DMFT) calculations predict that for negative inter-site hopping amplitudes (t<0) and an on-site Coulomb repulsion, U, comparable to the bandwidth, the system displays properties typical of a weakly correlated metal. In contrast, for t>0 a large enhancement of the effective mass, ferromagnetism and a Curie-Weiss magnetic susceptibility are found in a broad electron doping range. Our observation of Nagaoka ferromagnetism is consistent with the A-type antiferromagnetism (i.e. ferromagnetic layers stacked antiferromagnetically) observed in neutron scattering experiments on NaxCoO2. We propose that `Curie-Weiss metal' phase observed in NaxCoO2 is a consequence of the crossover from ``bad metal'' with incoherent quasiparticles at temperatures T>T* and Fermi liquid behavior with enhanced parameters below T*, where T* is a low energy coherence scale induced by strong local Coulomb electron correlations. We propose a model which contains the charge ordering phenomena observed in the system which, we propose, drives the system close to the Mott insulating phase even at large dopings.Comment: 24 pages, 15 figures; accepted for publication in Phys. Rev.

    Superconducting Pairing Symmetries in Anisotropic Triangular Quantum Antiferromagnets

    Full text link
    Motivated by the recent discovery of a low temperature spin liquid phase in layered organic compound κ\kappa-(ET)2_2Cu2_2(CN)3_3 which becomes a superconductor under pressure, we examine the phase transition of Mott insulating and superconducting (SC) states in a Hubbard-Heisenberg model on an anisotropic triangular lattice. We use a renormalized mean field theory to study the Gutzwiller projected BCS wavefucntions. The half filled electron system is a Mott insulator at large on-site repulsion UU, and is a superconductor at a moderate UU. The symmetry of the SC state depends on the anisotropy, and is gapful with dx2−y2+idxyd_{x^2-y^2}+id_{xy} symmetry near the isotropic limit and is gapless with dx2−y2d_{x^2-y^2} symmetry at small anisotropy ratio.Comment: 6 pages, 5 figure

    Evidence for nonlinear diffusive shock acceleration of cosmic-rays in the 2006 outburst of the recurrent nova RS Ophiuchi

    Full text link
    Spectroscopic observations of the 2006 outburst of the recurrent nova RS Ophiuchi at both infrared (IR) and X-ray wavelengths have shown that the blast wave has decelerated at a higher rate than predicted by the standard test-particle adiabatic shock-wave model. Here we show that the observed evolution of the nova remnant can be explained by the diffusive shock acceleration of particles at the blast wave and the subsequent escape of the highest energy ions from the shock region. Nonlinear particle acceleration can also account for the difference of shock velocities deduced from the IR and X-ray data. The maximum energy that accelerated electrons and protons can have achieved in few days after outburst is found to be as high as a few TeV. Using the semi-analytic model of nonlinear diffusive shock acceleration developed by Berezhko & Ellison, we show that the postshock temperature of the shocked gas measured with RXTE/PCA and Swift/XRT imply a relatively moderate acceleration efficiency.Comment: Accepted for publication in ApJ

    Polaron Excitations in Doped C60: Effects of Disorders

    Full text link
    Effects on C60_{60} by thermal fluctuations of phonons, misalignment of C60_{60} molecules in a crystal, and other intercalated impurities (remaining C70_{70}, oxygens, and so on) are simulated by disorder potentials. The Su-Schrieffer-Heeger--type electron-phonon model for doped C60_{60} is solved with gaussian bond disorders and also with site disorders. Sample average is performed over sufficient number of disorder configurations. The distributions of bond lengths and electron densities are shown as functions of the disorder strength and the additional electron number. Stability of polaron excitations as well as dimerization patterns is studied. Polarons and dimerizations in lightly doped cases (C60−1,−2_{60}^{-1,-2}) are relatively stable against disorders, indicated by peak structures in distribution functions. In more heavily doped cases, the several peaks merge into a single peak, showing the breakdown of polaron structures as well as the decrease of the dimerization strength. Possibility of the observation of polaronic lattice distortions and electron structures in doped C60_{60} is discussed.Comment: Note: This manusript was accepted for publication in Physical Review B. Figures will be sent to you via snail (conventional) mai

    Phase diagram and optical conductivity of the one-dimensional spinless Holstein model

    Full text link
    The effects of quantum lattice fluctuations on the Peierls transition and the optical conductivity in the one-dimensional Holstein model of spinless fermions have been studied by developing an analytical approach, based on the unitary transformation method. We show that when the electron-phonon coupling constant decreases to a finite critical value the Peierls dimerization is destroyed by the quantum lattice fluctuations. The dimerization gap is much more reduced by the quantum lattice fluctuations than the phonon order parameter. The calculated optical conductivity does not have the inverse-square-root singularity but have a peak above the gap edge and there exists a significant tail below the peak. The peak of optical-conductivity spectrum is not directly corresponding to the dimerized gap. Our results of the phase diagram and the spectral-weight function agree with those of the density matrix renormalization group and the exact diagonalization methods.Comment: 9 pages, 4 figures include
    • …
    corecore