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Motivated by the unconventional properties and rich phase diagram of NaxCoO2 we consider the electronic
and magnetic properties of a two-dimensional Hubbard model on an isotropic triangular lattice doped with
electrons away from half-filling. Dynamical mean-field theory �DMFT� calculations predict that for negative
intersite hopping amplitudes �t�0� and an on-site Coulomb repulsion, U, comparable to the bandwidth, the
system displays properties typical of a weakly correlated metal. In contrast, for t�0 a large enhancement of the
effective mass, itinerant ferromagnetism, and a metallic phase with a Curie-Weiss magnetic susceptibility are
found in a broad electron doping range. The different behavior encountered is a consequence of the larger
noninteracting density of states �DOS� at the Fermi level for t�0 than for t�0, which effectively enhances the
mass and the scattering amplitude of the quasiparticles. The shape of the DOS is crucial for the occurrence of
ferromagnetism as for t�0 the energy cost of polarizing the system is much smaller than for t�0. Our
observation of Nagaoka ferromagnetism is consistent with the A-type antiferromagnetism �i.e., ferromagnetic
layers stacked antiferromagnetically� observed in neutron scattering experiments on NaxCoO2. The transport
and magnetic properties measured in NaxCoO2 are consistent with DMFT predictions of a metal close to the
Mott insulator and we discuss the role of Na ordering in driving the system towards the Mott transition. We
propose that the “Curie-Weiss metal” phase observed in NaxCoO2 is a consequence of the crossover from a
“bad metal” with incoherent quasiparticles at temperatures T�T* and Fermi liquid behavior with enhanced
parameters below T*, where T* is a low energy coherence scale induced by strong local Coulomb electron
correlations. Our analysis also shows that the one band Hubbard model on a triangular lattice is not enough to
describe the unusual properties of NaxCoO2 and is used to identify the simplest relevant model that captures
the essential physics in NaxCoO2. We propose a model which allows for the Na ordering phenomena observed
in the system which, we propose, drives the system close to the Mott insulating phase even at large dopings.
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I. INTRODUCTION

One of the outstanding problems in quantum many-body
physics is to understand quasi-two-dimensional systems in
which both electron-electron interactions and frustration ef-
fects are strong.1 New exotic phases are expected to result
from the interplay of these effects. Recently a number of
materials have been discovered where the interplay of geo-
metrical frustration and strong electronic correlations lead to
the emergence of unconventional phases. Examples of such
materials include inorganic materials and organic charge
transfer salts such as �-�BEDT-TTF�2Cu2�CN�3 or ��-
�Pd�dmit�2�X �Refs. 2 and 3 explain this nomenclature�. An-
tiferromagnets on triangular lattices may be isotropic as in
NiGa2S4, �-�BEDT-TTF�2Cu2�CN�3 and, the material we
will focus on, NaxCoO2, or anisotropic as in Cs2CuCl4, �-
�BEDT-TTF�2Cu�N�CN�2�Cl. There is also a great deal of
interest in other frustrated geometries such as the Kagome
and pyrochlore lattices. However, NaxCoO2 has the, so far,
unique property among strongly correlated triangular lattice
compounds, that it can be doped. In �-�ET�2Cu2�CN�3 a spin
liquid state gives way to superconductivity when hydrostatic
pressure is applied.4 The ��-�Pd�dmit�2�X series5 of com-
pounds, Cs2CuCl4 �Ref. 6� and NiGa2S4 �Ref. 7� may also
show spin liquid behavior. Interestingly, the underlying
structures of �-�ET�2Cu2�CN�3 and the ��-�Pd�dmit�2�X
compounds are very similar to that of NiGa2S4 and NaxCoO2

with either the organic molecules, the Ni atoms or the Co
atoms arranged in a triangular geometry. Understanding the
physics of these systems in which both frustration and cor-
relations are present is clearly a major challenge to theory.

Much attention has been focused on the occurrence of
superconductivity in NaxCoO2·yH2O. However, the nonsu-
perconducting, nonhydrated counterpart, NaxCoO2, displays
many interesting magnetic and electronic properties. These
include a charge ordered insulating state in a narrow band of
doping around8 x=0.5, A-type antiferromagnetism9 for x
�0.75 and a metallic phase with a Curie-Weiss susceptibil-
ity, ��T��1/ �T+��, whose magnitude is much larger than
the Pauli susceptibility expected for a weakly interacting
metal8 �the Curie-Weiss metal�. This phase also has an ex-
tremely large thermopower �of order kB /e� that is tempera-
ture and field dependent.10 Foo et al. suggested8 that the
metallic state for x�0.5 should be regarded as paramagnetic
and the state for 0.5�x�0.75 be thought of as a Curie-
Weiss metal. These results should be compared with the
measurements of Prabhakaran et al.11 which display a differ-
ent behavior with the Curie-Weiss behavior that is strongest
at x=0.5 �the lowest value of x in their sample set� and the
susceptibility becoming less temperature dependent as x is
increased. These differences may be due to the rather differ-
ent strength fields used in the two different experiments,12 a
strong dependence on the direction of the field or to some
extrinsic effect. For x�0.75 A-type antiferromagnetism �in-
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plane ferromagnetic ordering stacked in alternate directions
along the c axis� is observed.13–16 On the triangular lattice
this raises the interesting possibility of in-plane Nagaoka
ferromagnetism,17 which we will discuss further below.
There is also direct experimental evidence for strong
electron-electron correlations which comes from unconven-
tional behavior of transport properties. For instance, a Fermi
liquid like resistivity �	�T�=	0+AT2� is only observed18 for
T
1 K, and the value of the Kadowaki-Woods ratio is com-
parable to ruthenates and heavy fermions.18,19 The low tem-
perature scale and the Kadowaki-Woods ratio are strongly
field dependent with the system becoming more weakly cor-
related with increasing field.

Interestingly, some of the above properties are reminis-
cent of the predictions of the dynamical mean-field theory
�DMFT� of the Hubbard model.20 At half filling �n=1�
DMFT predicts a Mott metal-insulator transition for U�W.
In the metallic phase close to the Mott transition there is a
low temperature scale, T*�n�, at which there is a smooth
crossover from a Fermi liquid to an incoherent “bad
metal.”20–22 Transport properties display a crossover from
those expected in a Fermi liquid to properties characteristic
of incoherent excitations as the temperature is increased.
Within the “bad metal” phase, that is for T�T*, electrons
behave as quasilocalized moments which leads to a Curie-
Weiss behavior of the magnetic susceptibility.20,21 The above
discussion suggests that DMFT, which treats the local elec-
tronic correlations exactly, may capture the relevant physics
needed to describe the temperature dependence of many of
the transport and magnetic properties of NaxCoO2.

An important first step in studying the properties of
NaxCoO2 is to consider the two-dimensional triangular lat-
tice Hubbard model. This is motivated by the arrangement of
the Co atoms and because correlation effects can be singled
out and better understood in the simplest model. Related
models such as the t-J model on the triangular lattice have
been recently analyzed using resonating valence bond �RVB�
theory.23 The implicit assumption in this kind of approach is
that many important aspects of more realistic models for
NaxCoO2 are already contained in the simpler triangular lat-
tice model. Our present study, however, leads to the impor-
tant conclusion that a single band Hubbard model on a trian-
gular lattice is not enough to describe the magnetic and
electronic properties of NaxCoO2 and a more realistic model
is proposed.

Our main finding, summarized in Fig. 1, is that DMFT
predicts dramatic changes in the behavior of the Hubbard
model on a triangular lattice when the sign of t is changed.
For t�0 we find significant effects due to strong electronic
correlations. We find that in the electron doped triangular
lattice a Curie-Weiss metal and metallic ferromagnetism
arise when only local Coulomb correlations are taken into
account. The Curie-Weiss metal occurs for sufficiently large
Coulomb repulsion energies U�W and t�0, where W is the
bandwidth. In this parameter region, the local magnetic sus-
ceptibility smoothly changes from the Curie form character-
istic of local moments at high temperature to Fermi liquid
behavior at low temperatures, T�T*�n���F, where �F is the
Fermi energy. In the Curie-Weiss metal the uniform suscep-
tibility is strongly enhanced by both band narrowing due to

correlations and the proximity to the ferromagnetic instabil-
ity. In contrast, the electron doped triangular Hubbard model
with t�0 and U�W displays Pauli paramagnetism weakly
enhanced by the Coulomb repulsion; a behavior typical of
weakly correlated metals. Thus our analysis shows how the
noninteracting dispersion has a dramatic effect on the elec-
tronic and magnetic properties of a frustrated Hubbard
model. Thus, our work is relevant to DMFT applications on
real materials where similar LDA density of states appear to
help in understanding the physics in the more complicated
situations.

The remainder of this paper is organized as follows: In
Sec. II we introduce the Hubbard model on a triangular
model discussed above, and then examine the solution of this
model on three sites which already contains some features of,
and gives significant insight to, the solution of the triangular
lattice in the thermodynamic limit. In Sec. III we introduce
the main DMFT equations and present arguments which sug-
gest that DMFT, which is only exact in infinite dimensions,

FIG. 1. Phase diagram for the electron doped Hubbard model on
a triangular lattice obtained from DMFT calculations. U / �t� is the
ratio of the on-site Coulomb repulsion to the absolute value of the
hopping matrix element t and n is the average number of electrons
per site. The sign of t leads to qualitative changes in the phase
diagram. In the t�0 case, a ferromagnetic metal and a metal with
Curie-Weiss susceptibility are found. In contrast, for t�0 a para-
magnetic metal appears throughout the phase diagram. To make a
direct comparison with NaxCoO2 one should note that x=n−1.
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may capture the essential physics of the Hubbard model on a
two-dimensional triangular lattice due to frustration. In Sec.
IV we analyze the temperature dependence of the local and
uniform magnetic susceptibilities for both t�0 and t�0. In
Sec. V we analyze the local correlation effects and the elec-
tronic properties of the model. We report spectral densities
and self-energies in both signs of t and their relation with the
different magnetic susceptibilities found in Sec. IV. In Sec.
VI we show that for t�0 and electron doping we find Na-
gaoka ferromagnetism. In Sec. VII we discuss the experi-
mental situation on NaxCoO2 in the light of our results. In
Sec. VIII we discuss improvements and extensions to both
the model and the approximation used to study it, we argue
that multiple band models and particularly the effects of or-
dering of the Na ions are essential to understand the behavior
observed in NaxCoO2. The paper ends in Sec. IX in which a
summary of main results is given and our conclusions are
drawn.

II. THE HUBBARD MODEL ON A TRIANGULAR
LATTICE

As stated in the Introduction, we analyze the magnetic
and electronic properties of a Hubbard model on a triangular
lattice,

H = − t �
�ij	,

�ci
† cj + H.c.� + U�

i

ni↑ni↓ − ��
i,

ni, �1�

where �, t, and U are the chemical potential, the nearest-
neighbor hopping amplitude, and the on-site Coulomb repul-
sion energies, respectively, ci

�†� �creates� destroys an electron
on site i with spin , �¯	 indicates that the sum is over
nearest neighbors only and the number operator is ni

ci

† ci.
For U=0 the above model gives a tight-binding disper-

sion

�k = − 2t cos�kx� − 4t cos��3

2
kycos� kx

2
 − � , �2�

with bandwidth W=9�t�.

A. Review of previous work

For the Hubbard model on the square lattice at half filling,
the ground state is believed to be a Mott insulator with Néel
order for all values of U / t. The fact that this occurs even for
arbitrarily small U / t is due to the perfect nesting of the non-
interacting Fermi surface at half filling. In contrast, the tri-
angular lattice may exhibit diverse phases as U / t is varied.
Possible ground states that have been proposed include the
Mott insulator, commensurate noncollinear antiferromag-
netism, incommensurate spin-density wave �both metallic
and insulating�, spin liquid, superconducting, and metallic
states.

In the strong correlation limit, U� t, there is a gap in the
charge excitation spectrum and the ground state is a Mott
insulator. The spin excitations are described by an antiferro-
magnetic Heisenberg model on the triangular lattice with ex-
change constant J=4t2 /U. Numerical calculations from a

range of techniques including exact diagonalization,24 varia-
tional quantum Monte Carlo,25,26 coupled cluster methods,27

and series expansions28,29 suggest that this has a magneti-
cally ordered ground state in which neighboring spins are
rotated by 120° relative to one another, as in the classical
ground state. This agrees with the predictions of spin wave
theory.30 However, series expansions calculations suggest
that the excitation spectrum is qualitatively different from
that predicted by nonlinear spin wave theory.31

At half-filling there is no nesting of the noninteracting
Fermi surface and so for small U / t a metallic state is pos-
sible. Exact diagonalization calculations of the Drude weight
for lattices with 12 sites suggest that there is a first-order
transition from a metal to a Mott insulator when U�12.1t,32

mean-field RVB calculations in the thermodynamic limit find
a remarkably similar result with a first order Mott transition
occurring at U�12.4t.33 When U�4t the effective spin
Hamiltonian in Mott insulating phase should include ring
exchange terms of order t3 /U2 �Ref. 34�. On the triangular
lattice this can lead to a spin liquid ground state.35 The pos-
sible realization of a spin liquid in �-�ET�2Cu2�CN�3 �Ref. 4�
has stimulated the proposal of specific analytical theories for
the ground state in this regime.36,37 In this parameter regime
a superconducting ground state with d+ id symmetry,38 or
odd frequency pairing39 have also been proposed �it is there-
fore interesting to note that odd frequency pairing has also
been discussed on the basis of specific microscopic calcula-
tions for NaxCoO2·yH2O �Ref. 40��.

Hartree-Fock41 and slave boson mean-field calculations42

have found that near the metal-insulator phase boundary that
incommensurate spin-density wave states are also stable.
Simulated annealing calculations of mean-field solutions
with large possible unit cells found that for U=2t and U
=4t that the most stable states were metals with charge and
spin ordering.43

For electron doping away from half-filling and U� t, dou-
bly occupied states can be projected out and a t-J model can
describe the system. Extensive studies of this model have
been made.23,44 These studies show that the sign of t has a
significant effect on the type of ground state.23 RVB
calculations23,44 found that, for t�0, d+ id superconductivity
was possible for a range of dopings and suggested a variety
of unusual metallic states. Series expansions45 have empha-
sized the competition between singlet and triplet formation
on the triangular lattice in terms of competition between
RVB states and Nagaoka ferromagnetism. This work con-
cludes that for hole doping the RVB state is favored by t
�0 and the Nagaoka state is favored by t�0. Changing the
sign of t is equivalent to changing from electron to hole
doping, therefore this result is entirely consistent with the
results summarized in Fig. 1. A more detailed comparison
between our results and those of Koretsune and Ogata45 will
be given in Sec. VI.

B. Relevance to NaxCoO2

For NaxCoO2 the LDA bandwidth gives �t��0.1 eV.47,48

For electron doping the dispersion �2� leads to a Fermi sur-
face which is hole-like for t�0 and electron-like for t�0,
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thus t�0 is roughly consistent with the band structure cal-
culations and angle resolved photoemission spectroscopy
�ARPES� experiments for NaxCoO2. However, the band
structure of NaxCoO2 is still controversial. ARPES �Ref. 46�
seems to suggest that a simple tight binding model with t
�0 on the triangular lattice may be sufficient to describe the
a1g bands of NaxCoO2. However, even within a single band
model hopping matrix elements up to at least third nearest
neighbors48–50 need to be included in order to correctly re-
produce the LDA band structure. Further, LDA calcula-
tions47,48 predict the existence of six small elliptical hole
pockets near to the K points if x
0.6. It is not clear, at this
point, whether or not the elliptical pockets actually exist.51,52

In contrast to the a1g bands, the LDA dispersion of the e1g
bands is better fitted to a t�0 triangular lattice tight-binding
dispersion.48

Several attempts46,47 have been made to estimate U for
NaxCoO2; all of these find that U�W. This is much larger
than in the organic charge transfer salts such as �-
�ET�2Cu2�CN�3 or ��-�Pd�dmit�2�X, in which U�W �Ref.
53, and references therein�.

It is worth keeping in mind the limitations of this Hamil-
tonian as a model for NaxCoO2. For instance, the charge
ordered state observed in a narrow region around x=0.5
seems likely to be due to the response of the electronic sys-
tem to the ordering of the Na atoms which is observed even
at high temperatures by x-ray diffraction.8 Therefore one
does not expect this phase to appear in purely electronic
models such as those considered here. Nevertheless, before
attempting to understand more complicated models with re-
alistic band structures �including possibly multiple bands� or
including the effects of Na ordering, it is important to have a
firm understanding of strong correlations in simple frustrated
models. Therefore, despite the remarks above, we present
below a DMFT study of the Hubbard model on a triangular
lattice �1�. In Sec. VIII B we discuss extensions to the Hub-
bard model which allow one to investigate such effects.

C. Kinetic energy frustration

Geometrically frustrated antiferromagnetism has been
studied extensively and the triangular lattice provides a
model system to investigate. Three of the most widely used
quantitative measures of frustration in antiferromagnets are
�i� the degeneracy of the ground state, �ii� the magnitude of
the entropy at low temperatures, and �iii� the ratio of the
ground state energy to the total energy of maximising the
individual interaction energies.31

In a noninteracting electron model the only proposal we
are aware of for a quantitative measure of the geometrical
frustration of the kinetic energy is due to Barford and Kim.54

They noted that, for t�0, an electron at the bottom of the
band does not gain the full lattice kinetic energy, while a hole
at the top of the band does. They suggested that for tight
binding models a measure of the frustration is then �
= ��k

max�− ��k
min�, where �k

max and �k
min are the energies �relative

to the energy of the system with no electrons� of the top and
bottom of the band, respectively. This frustration increases
the density of states for positive energies for t�0 �negative

energies for t�0� which represents an increased degeneracy
and enhances the many-body effects when the Fermi energy
is in this regime. However, perhaps a simpler measure of the
kinetic energy frustration is W /2z�t�, where W is the band-
width and z is the coordination number of the lattice. The
smaller this ratio, the stronger the frustration is, while for an
unfrustrated lattice W /2z�t�=1. For example, on the triangu-
lar lattice the kinetic energy frustration leads to a bandwidth,
W=9�t�, instead of 12�t� as one might naively predict from
W=2z�t� since z=6.

We show below that geometrical frustration of the kinetic
energy is a key concept required to understand the properties
of the Hubbard model on the triangular lattice. In particular it
leads to particle-hole asymmetry which enhances many-body
effects for electron �hole� doped t�0 �t�0� lattices.

It should be noted that geometrical frustration of the ki-
netic energy is a strictly quantum mechanical effect arising
from quantum interference. This interference arises from
hopping around triangular clusters which will have an ampli-
tude proportional to t3 which clearly changes sign when t
changes sign. In contrast on the, unfrustrated, square lattice
the smallest possible cluster is the square and the amplitude
for hopping around a square is independent of the sign of t as
it is proportional to t4. Barford and Kim54 noted that the
phase collected by hopping around a frustrated cluster may
be exactly canceled by the Aharonov-Bohm phase associated
with hopping around the cluster for a particular choice of
applied magnetic field. Thus a magnetic field may be used to
lift the effects of kinetic energy frustration. The quantum
mechanical nature of kinetic energy frustration is in distinct
contrast to geometrical frustration in antiferromagnets which
can occur for purely classical spins.

D. The Hubbard model on a triangular cluster

1. Noninteracting case „U=0…

In order to gain some basic insights into some of the rich
physics associated with the triangular lattice Hubbard model,
we now review the exact solution on a single triangle. This is
the simplest possible model with kinetic frustration and
strongly correlated electrons. This model already contains
some of the features found in the solution of the Hubbard
model on the triangular lattice in the thermodynamic limit
and gives significant insight into that problem. In particular
the solution of this toy problem illustrates why the sign of t
is important and why ferromagnetism arises in the solution to
a problem that only contains kinetic, local and �via superex-
change� antiferromagnetic interactions.

Let us begin by recalling the solution of the two site clus-
ter with U=0 and spinless fermions. Let us label the Wannier
functions on the two sites �1	 and �2	. For t�0 the single
electron ground state is the bonding orbital with wave func-
tion ��	= 1

�2
��1	+ �2	� and energy E=−t=−�t�. For t�0 the

single electron ground state is the antibonding orbital with
��	= 1

�2
��1	− �2	� and E= t=−�t�. �Note that in general chang-

ing the sign of t reverses the ordering of the energy levels.�
Thus W=2t for the two site cluster which, as z=1 for the two
site lattice, fits with the general expectation that, for an un-
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frustrated lattice, the bandwidth is given by 2zt.
The ground state of the U=0 triangular cluster has some

significantly different properties compared to the two-site
cluster. For t�0 the single electron ground state is com-
pletely bonding with ��	= 1

�3
��1	+ �2	+ �3	� and E=−2t

=−2�t�, but for t�0 we cannot construct a completely anti-
bonding solution and so the single electron ground state is
degenerate with ��	= 1

�6
��1	−2�2	+ �3	� or ��	= 1

�6
��1	+ �2	

−2�3	� and E= t=−�t�. Thus even at the noninteracting level
the bandwidth is reduced �W=3t, z=2 which implies
W /2zt=3/4� by the effects of geometric frustration.

Moving to noninteracting spin 1/2 fermions, one can al-
ready see how the three site cluster with t�0 is easier to
magnetize than the t�0 case. In Fig. 2 the energy level
structure of the t�0 and t�0 three site clusters containing
four electrons are displayed. It costs no energy to flip one
spin in the cluster, �E=E�↑↑ ↑ ↓ �−E�↑↓ ↑ ↓ �=0, for t�0,
whereas there is an energy cost of �E=3�t� associated with
flipping a spin in the t�0 case. We will see in Sec. VI that
this tendency to ferromagnetism persists in the noninteract-
ing triangular lattice.

2. Interacting case „U�0…

For a strongly interacting system the filling factor n will
play an important role in the solution. A nontrivial case in the
triangle relevant to NaxCoO2 is n= 4

3 . The n= 5
3 case is trivial

as is simply the case of a single �and therefore noninteract-
ing� hole, while the half filled case will not be studied in
detail in this paper. The relevant basis set is rather different
from that for noninteracting particles and we therefore illus-
trate the solution in Fig. 6 below. To represent this basis set
more precisely we will adopt the notation �� ,� ,�	 where the
values of �, �, and � indicate the state on the first, second,
and third sites, respectively. We allow �, �, and � to take the
values 0, indicating an unoccupied site, ↑, indicating a site
singly occupied with a spin up electron, ↓, indicating a site
singly occupied with a spin down electron, and �� which

indicates a doubly occupied site.55 For t�0 we find that for
any finite U the ground state has energy56

E− =
1

2
�2t + 3U − �36t2 − 4tU + U2� �3�

and is a superposition of singlets

��−	 =
1

A
sin ���↑↓,↑↓,0	 + �↑↓,0,↑↓	 + �0,↑↓,↑↓	�

+
1

A
cos ����↑↓,↑,↓	 − �↑↓,↓,↑	�

+ ��↑,↑↓,↓	 − �↓,↑↓,↑	� + ��↑,↓,↑↓	 − �↓,↑,↑↓	�� ,

�4�

where

tan � =
U + 6t − �36t2 − 4tU + U2

U − 6t + �36t2 − 4tU + U2
, �5�

and the normalization factor is A=�3+3 cos2 �. Clearly, �
→0 as U→� and �→−� /4 as U→0. We sketch this wave
function in the lower part of Fig. 3.

��−	 is a superposition of the resonating valence bond
state and the states with two doubly occupied sites. The fact
that �→0 as U→� indicates that the amplitude for having
two doubly occupied sites vanishes in this limit as one ex-
pects. Clearly ��−	 has no net magnetization, and this state
leads to the paramagnetic state found in the thermodynamic
limit for t�0 �cf. Fig. 1�. ��−	 has significant short-range
antiferromagnetic spin fluctuations, which are not captured
in the purely local DMFT treatment that follows, although it
is likely that these persist in the true thermodynamic ground
state �see Sec. II A�.

For any finite U and t�0 the ground state has energy
E+=−2t+U and is threefold degenerate. All three states are
spin 1 and three degenerate states correspond to Sz=−1, 0,
and 1. The respective eigenstates correspond to superposi-
tions of triplets and are

��+
↓	 =

1
�3

��↑↓,↓,↓	 − �↓,↑↓,↓	 + �↓,↓,↑↓	� , �6�

��+
0	 =

1
�6

���↑↓,↑,↓	 + �↑↓,↓,↑	� − ��↑,↑↓,↓	 + �↓,↑↓,↑	�

+ ��↑,↓,↑↓	 + �↓,↑,↑↓	�� , �7�

and

��+
↑	 =

1
�3

��↑↓,↑,↑	 − �↑,↑↓,↑	 + �↑,↑,↑↓	� . �8�

These wave functions are illustrated in the upper part of
Fig. 3.

��+
↓	, ��+

0	, and ��+
↑	 display short range ferromagnetic

fluctuations for all finite U, in particular the total spin of the
system is a maximum along one axis as the ground state
consists of a superposition of triplets. As the ferromagnetism

FIG. 2. Energy cost in spin polarizing the three site triangular
cluster with four noninteracting electrons. For t�0 the ground state
is degenerate and there is no energy cost in flipping one spin. In
contrast, it costs 3�t� to polarize the t�0 cluster. This indicates that
the tendency to ferromagnetism of the electron doped t�0 triangu-
lar cluster is much stronger than that of the cluster with t�0 even at
the one-electron level.
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is associated with kinetic energy frustration, we have a
Nagaoka-type ferromagnet for any finite value of U. In the
calculations for the infinite triangular lattice with t�0 pre-
sented below we will again see this type of magnetism for
some fillings, but with a phase transition from a Curie-Weiss
metal to a Nagaoka ferromagnet at some finite value of U, as
is shown in Fig. 1.

In order to quantify the nature and magnitude of the spin
interactions induced by the correlations we evaluate the ex-

pectation value of S� i ·S� j for neigboring sites on the triangle.
We find that for t�0, this expectation value is 1 /12, whereas
for t�0 it is −cos �2 / �3�1+cos �2�� which becomes more
negative with increasing U and tends to −1/6 for U� �t�. For
reference, for the two site Hubbard model, with two elec-
trons, this expectation value is always negative, regardless of
the sign of t, indicating antiferromagnetic spin correlations.
Here, we see that for the triangular cluster, the sign of t
determines whether the nearest neighbor spin correlations are
ferromagnetic or antiferromagnetic.

III. DYNAMICAL MEAN-FIELD THEORY

A. Relevance of DMFT to the two-dimensional
triangular lattice

Before presenting our results an important issue to ad-
dress is the relevance of DMFT to model �1� which describes
a two-dimensional system. DMFT is only exact in infinite
dimensions or for a lattice with infinite coordination number.
We will see below that an important role of the triangular
lattice, as compared to other, nonfrustrated, lattices, is not
just that the shape of the bare DOS changes �which is ex-
tremely important� but also to make DMFT a good approxi-
mation.

DMFT has become an important tool in the description of
strongly correlated systems. It has provided a realistic de-
scription of transport and dynamical properties of materials
such as transition metal oxides and layered organic supercon-
ductors with frustrated lattices such as �-�BEDT-TTF�2X,
where X is an anion, e.g., I3 or Cu2�CN�3. The �-�BEDT-
TTF�2X family have a phase diagram �as a function of pres-
sure, uniaxial stress, or chemical substitution� in which a
superconducting phase is in close proximity to a Mott insu-
lating phase. In the metallic phase of the �-�BEDT-TTF�2X
there is a temperature scale, T*, at which there is a smooth
crossover from a Fermi liquid to an incoherent “bad metal”
�characterized by the absence of a Drude peak in the fre-
quency dependent conductivity, a resistivity of the order of
the Ioffe-Regel-Mott limit �� /e2a, where a is the lattice con-
stant�, a thermopower of the order of kB / �e�, and a nonmono-
tonic temperature dependence of the thermopower and
resistivity�.22,59 The temperature dependence of transport
properties displays a crossover from coherent Fermi liquid
behavior to incoherent excitations. In the case of the organic
superconductors it has been found that the DMFT of the
Hubbard model gives both a qualitative22 and quantitative59

description of this crossover from a Fermi liquid to a “bad
metal” in which there are no quasiparticles.

The crossover temperature scale is related to the destruc-
tion of Kondo screening and Fermi liquid behavior with in-
creasing temperature �above the Kondo temperature TK� in
the Anderson model �which is the effective model solved in
the DMFT equations as described above�. In the Anderson
model the conduction electrons are strongly scattered by a
�localized� magnetic impurity for T�TK. But for T�TK a
singlet forms between the impurity and the conduction elec-
trons. In the DMFT of the Hubbard model for T�T* the
electrons are quasilocalized and the electrons on the single
site treated exactly strongly scatter those in the bath. How-
ever, for T�T*, transport is coherent and the electrons only
scatter one another weakly, thus Fermi liquid behavior is
regained.

The success of DMFT in describing the transport proper-
ties and the phase diagram of many organic charge transfer
salts down to temperatures of about 10–20 K �where, for
example, superconductivity becomes important� has been
rather puzzling given that these materials are quasi-two-
dimensional and DMFT is only expected to be a good ap-
proximation in the limit of high dimension or coordination
number. However, the applicability of DMFT to low-

FIG. 3. �Color online� A pictorial representation of the ground
states of the Hubbard model on a triangular cluster with four elec-
trons. Doubly occupied sites are indicated by the presence of two
arrows, one pointing up and the other pointing down, while unoc-
cupied sites have no arrows. In the cases where we have only one
doubly occupied site the remaining sites with only one electron can
form either a singlet �indicated by a thick red line with arrows on
the two sites pointing in opposite directions� or a triplet �indicated
by a thick blue line with arrows on the two sites pointing in the
same direction�. Thus, the middle left triangle indicates the state
1
�2

��� � , ↑ , ↓ 	− �� � , ↓ , ↑ 	�. The top left triangle indicates one the
three states �↓,↓,��	, 1

�2
��↑ , ↓ , � � 	+ �↓ , ↑ , � � 	� or �↑,↑,��	 �Ref. 55�.

To keep the figure as simple as possible we have not included
normalization factors in the figure, but the correct normalizations
are given in Eqs. �4� and �6�–�8�. The lower part of the figure
illustrates ��−	, the ground state for any nonzero value of U and t
�0 �cf. Eq. �4�� �the ground state is degenerate for t�0 and U
=0�. The upper part of the figure illustrates all three degenerate
states ��+

↓	, ��+
0	, and ��+

↑	 as these only differ by the value of the
Sz=0 projection of the triplet. These states are the ground states for
t�0 and any value of U �cf. Eqs. �6�–�8��. ��−	 depends on the
variable � which is a function of the ratio U / t, given by Eq. �5�.
�→0 as U→�; �=� /4 for U=0.
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dimensional systems with large frustration is consistent with
the fact that for frustrated magnetic models a Curie-Weiss
law holds down to a much lower temperature than for un-
frustrated models60–62 indicating the presence of well formed
local moments. Recently, Zheng et al.62 calculated the tem-
perature dependence of the magnetic susceptibility of the an-
tiferromagnetic Heisenberg model on an anisotropic triangu-
lar lattice. They found that for models close to the isotropic
triangular lattice �i.e., models with significant magnetic frus-
tration� that the Curie-Weiss law �which is a mean-field,
single site approximation� holds down to relatively low tem-
peratures. Deviations from Curie-Weiss behavior result from
spatially dependent correlations. Hence, we expect that a
DMFT treatment of the Hubbard model on the triangular
lattice will be a good approximation down to much lower
temperatures than unfrustrated models. Furthermore, in the
“bad metal” region magnetic properties such as the uniform
susceptibility and spin relaxation rate, can be described by
the Heisenberg model because the electrons are essentially
localized due to the proximity to the Mott insulating phase.
This means that the susceptibility can be fit to a Curie-Weiss
form down to temperatures much less than the exchange en-
ergy J. Furthermore, the spin correlation length of the anti-
ferromagnetic Heisenberg model increases with temperature
T much more slowly for the triangular lattice than the square
lattice.63 Specifically, at T=0.3J the spin correlation length is
only one lattice constant for the triangular lattice. In contrast,
for the square lattice the correlation length is about 50 lattice
constants, at T=0.3J.63

The above arguments have been recently tested by means
of cluster DMFT calculations. These calculations show how
for the isotropic triangular lattice the solution coincides with
single site DMFT �in particular a quasiparticle peak appears
at the Fermi energy�. However, as soon as frustration is re-
leased a pseudogap opens up in the one-electron spectra as a
result of short range antiferromagnetic correlations.64

A further hint that DMFT is a better approximation on the
triangular lattice than on the square lattice comes from the
fact that we find that at half filling our calculations predict
that the Mott transition occurs at Uc�15�t� �see Figs. 1 and
9�. This compares with exact diagonalization studies on 12
site lattices32 which find that the Mott transition takes place
at U�12�t�. On the square lattice it is known that perfect
nesting means that the ground state is a Mott insulator for
any finite U. However, DMFT predicts20 that Uc�12�t� un-
less antiferromagnetism is included. Thus �without including
antiferromagnetism� DMFT gives a qualitatively incorrect
result for the �unfrustrated� square lattice, but a qualitatively
correct result for the �frustrated� triangular lattice.

B. Formalism

The electronic and magnetic properties of the Hubbard
model on the triangular lattice �1� are analyzed below using
DMFT.20 Previously, various properties of doped Mott insu-
lators on an hypercubic lattice have been explored within
DMFT in the context of the high-Tc superconductors21 using
Quantum Monte Carlo �QMC� techniques. Here, we apply
DMFT to a frustrated lattice and use exact diagonalization

and Lanczos techniques to solve the associated Anderson
impurity problem57 at finite and zero temperature, respec-
tively.

We will now briefly describe the DMFT formalism focus-
ing on the relevant equations and quantities of interest in this
work. For a more detailed discussion see, for example, Ref.
20. DMFT treats the quantum dynamics on a single site ex-
actly and the remaining lattice sites provide a bath with
which this site interacts. One may map the Hubbard model
onto an Anderson single-impurity model which must be
solved self-consistently. The bath is described through the
Weiss field, G0�i�n�. The iterative procedure starts by solv-
ing the Anderson model for a given choice of G0�i�n�.
From the on-site Greens function, G�i�n� we may obtain
the self-energy of the system

��i�n� = G0
−1�i�n� − G

−1�i�n� , �9�

which is used to describe the lattice propagator

G�i�n� = �
k

G�k,i�n� �10�

=�
k

1

i�n + � − �k − ��i�n�
, �11�

where � is the chemical potential, �n= �2n+1�� /� is a Mat-
subara fermionic frequency, and �=1/kBT. The above pro-
cedure is repeated until a self-consistent solution for the lat-
tice propagator is found.

1. Magnetic susceptibilities

The magnetization of the system under a small magnetic
field, h, is computed from

m = �B�n↑ − n↓� , �12�

where n↑ and n↓ are obtained from the DMFT solution at
self-consistency.

The uniform �q=0� susceptibility is then obtained numer-
ically58 from

��T� = lim
h→0

�m

�h
. �13�

It is interesting to compare the uniform susceptibility with
the local susceptibility obtained from

�loc�T� = �
q

��q� = �B
2�

0

�

�Sz�0�Sz���	d� , �14�

where Sz���=n↑���−n↓���.
The local susceptibility in the imaginary frequency axis is

given by

�loc�i�n� = �B
2�

0

�

e−i�n��Sz�0�Sz���	d� . �15�

The frequency-dependent local magnetic susceptibility is
related20 to the nuclear magnetic resonance �NMR� Knight
shift K�T� by
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K�T� = A lim
�→0

Re �loc�� + i�� �16�

when the hyperfine interaction A form factor is independent
of the wave vector, i.e., in the local limit appropriate to
DMFT. The NMR relaxation rate 1 /T1 is given by

1

T1T
� lim

�→0

1

�

Im �loc�� + i��
�

, �17�

where � is a real frequency and � is an arbitrarily small real
number.

2. Numerical methods

Due to the rapid convergence of the solution with the bath
size57 it is sufficient to use a discrete set of states of ns
=6–10 sites to model the electronic bath in order to obtain
reliable results. In what follows we use Lanczos diagonaliza-
tion on ns=8 sites to calculate zero temperature properties. In
Sec. IV we also present results for high temperatures for
which the Lanczos technique is not adequate, we therefore
use exact diagonalization to solve the Anderson impurity
problem. However, as exact diagonalization is more compu-
tationally expensive than Lanczos diagonalization we are
limited to ns=6 for these calculations. Further it is well
known20 that for exact diagonalization there is a low energy
scale Tns=E1−E0, where E0 and E1 are respectively the
ground state energy and the energy of the first excited state
of the system �recall that there is a finite energy gap to the
first excited state because of the finite bath size�, below
which the results of exact diagonalization calculations are
not trustworthy. We therefore present exact diagonalization
results for finite temperatures with T�Tns and Lanczos data
valid in the T→0 limit. Combining the two methods allows
us to have a rather complete description of the T-dependence
of various properties.

IV. TEMPERATURE DEPENDENCE OF MAGNETIC
SUSCEPTIBILITY

We now analyze the behavior of the uniform and local
magnetic susceptibilities obtained from DMFT for the Hub-
bard model on the triangular lattice for both t�0 and t�0.
We find that the two different signs of the hopping integral
lead to very different magnetic responses �cf. Fig. 1� and that
Curie-Weiss metallic behavior appears when t�0 but not for
t�0.

A. Local magnetic susceptibility

The degree of localization of the electrons in the triangu-
lar lattice with different signs of t can be explored by com-
puting the imaginary time, �, local spin autocorrelation func-
tion,

H��� 
 �Sz�0�Sz���	 . �18�

Such a correlation function can be related to a spectral den-
sity A��� by65

H��� =
1

2�
�

−�

�

d� exp�− ���
A���

1 − e−�� . �19�

If A���=−A�−��, then

H��� =
1

2�
�

0

�

d�
A����e−�� + e−��−����

1 − e−�� . �20�

It then follows that H���=H��−��, as one expects for the
correlation function of commuting operators,66 and H���
should be symmetric about �=� /2. The function H��� is
related to the local susceptibility at Matsubara frequencies by
Eq. �15�.

The simplest possible form that the frequency dependent
local susceptibility �loc��� �compare Eqs. �16� and �17�� can
take is a “Drude” type form with a single relaxation rate, �,
�loc���=�0 / �1+ i� /��, leading to a Lorentzian form for the
spectral density. We note that for a single impurity Anderson
model it was found that this Drude form of the relaxation
rate is a good approximation for temperatures larger than the
Kondo temperature.67

In a Fermi liquid, H����1/�2 for 1 /��1/��T*. In a
Mott insulator, H��� decays exponentially to a nonzero value
for long imaginary times ��� /2.20 The “bad metal” regime
represents intermediate behavior, and the value H��=� /2� is
a measure of the extent to which the electrons are localized.

In the limit in which �Sz�0�Sz���	 becomes constant one
obtains from Eq. �14�,

�loc�T� =
�B

2

T
, �21�

recovering the Curie law for localized magnetic moments. In
Fig. 4 we have plotted �Sz�0�Sz���	 for U=10�t�, n=1.3 at
inverse temperature of �=3/ �t�, for both t�0 and t�0. In-
deed we find that electrons for the t�0 triangular lattice
�weak � dependence� are more localized than those in the t

FIG. 4. �Color online� The imaginary time local spin autocorre-
lation function for both t�0 and t�0 with n=1.3, U=10�t� and
�=3/ �t�. The larger values of �Sz�0�Sz��=� /2�	 for t�0 than for
t�0 indicates the greater degree of localization of the electrons for
t�0.
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�0 case �strong � dependence�. Both curves are symmetric
about �=� /2 as is required.

We find that �Sz�0�Sz���	 is not constant for either sign of
t which reflects spin relaxation processes and the fact that
electrons are not completely localized. The actual behavior at
large temperatures is not the pure Curie behavior of Eq. �21�
but rather, to a good approximation, can be fitted to the
Curie-Weiss form

�loc�T� �
�loc

2

T + T*�n�
, �22�

where T*�n� is again the coherence scale.
In Fig. 5 we plot 1 /�loc�T� from the actual numerical re-

sults obtained from DMFT for different electron occupation
comparing t�0 with the t�0 case. Over a broad tempera-
ture range the temperature dependence is consistent with a
Curie-Weiss form. However, the coherence scale is much
larger for t�0 than for t�0.

B. Uniform magnetic susceptibility

In Fig. 6 we show the temperature dependence of ��T� /�0

for the triangular lattice with t�0 and U=10�t�, where �0 is
the noninteracting uniform susceptibility of the triangular lat-
tice. We find that the temperature dependence of the uniform
magnetic susceptibilities are very different for the different
signs of the hopping integral. The magnetic susceptibility
displays Curie-Weiss behavior at large temperatures when t
�0, whereas for t�0, ��T� displays the Pauli paramagnet-
ism characteristic of a weakly correlated metal.

We now discuss the t�0 case in more detail. To be spe-
cific, for t�0 and at high temperatures, the uniform suscep-
tibility can be fitted to the expression

��T� �
�2

T + ��n�
, �23�

where ��n� and � depend on U and n. Note that the tempera-
ture scale ��n� reduces to ��n�=−TC, where TC is the critical
temperature at which the ferromagnetic transition occurs for
certain values of n, �1.35
n
1.6 for U=10�t�; see Sec. VI
for details�. The Curie-Weiss behavior described by Eq. �23�
is valid for large temperatures, T�T*�n�. This is because in
this temperature regime the electronic system behaves like a
set of quasilocalized magnetic moments. For T�T*�n� the
Curie-Weiss behavior crosses over to a behavior more remi-
niscent of a renormalized Fermi liquid with a weak tempera-
ture dependence. Fitting our results to Eq. �23� for T
�T*�n�, gives ��n=1.7��−0.17�t� and ��n=1.3��0.01�t� for
n=1.3. For the ferromagnetic metal appearing for, say, n
=1.38, the transition to a ferromagnetic metal occurs at TC
=−��n=1.4��0.05�t�. The effective magnetic moment, � ob-
tained from the fitting varies between �=0.7�B for n=1.3
and �=0.4�B for n=1.7.

As n is increased one expects that the average moment
will be roughly proportional to the density of unpaired elec-
trons, 2−n, at each lattice site. Thus �2 is suppressed with
increasing n and fixed U. Hence one expects that �2 varies
between �=�B for n=1 �half-filled system� and �=0 for n
=2 �filled band�. This is consistent with the values of �
obtained from the fit of Eq. �23� to our numerical results �see
the inset of Fig. 7�. As the temperature is decreased the sus-
ceptibility changes its behavior so that �0 /��T� becomes less
dependent on temperature �this is most obvious for n=1.7�.
A crossover from Curie-Weiss behavior at high temperatures
to Fermi liquid behavior at low temperatures is encountered.

FIG. 5. �Color online� The temperature dependence of the in-
verse of the local spin susceptibility for different electron occupa-
tions, n. We present results for U=10�t� and for both t�0 and t
�0. The lines are guides to the eye. For the t�0 cases �only n
=1.3 is shown for clarity� the coherence temperature T*� �t�,
whereas for the t�0 cases T*��t�.

FIG. 6. �Color online� Curie-Weiss versus paramagnetic behav-
ior of the uniform susceptibility, ��T�, for the Hubbard model on
the triangular lattice with U=10�t�. The inset shows �0 /��T� �where
�0 is the zero temperature noninteracting magnetic susceptibility�.
The central panel compares the strong T dependence for t�0 with
the nearly temperature independent behavior for t�0 �Pauli para-
magnetism�. For n=1.4 ferromagnetism appears below a critical
temperature, Tc. The main panel displays the inverse of the uniform
susceptibility, �0 /��T�, showing the Curie-Weiss T dependence for
t�0. The arrow indicates the coherence temperature T* found from
fitting the local susceptibility data in Fig. 5 to Eq. �22�.
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The properties of the Fermi liquid state �e.g., effective mass
renormalization, susceptibility enhancement� at low tempera-
ture will be discussed in the following section.

In Fig. 7 we show a plot of both temperature scales ob-
tained from fitting our data to the Curie-Weiss laws of Eqs.
�22� and �23� to obtain, T*�n� and ��n�, respectively. T*�n�
increases with the electron occupancy. This is to be expected
as the system becomes more weakly correlated in the n→2
limit, remaining coherent at temperatures comparable with
the noninteracting Fermi temperature. On the other hand,
��n� can change sign, which is related to the effective short
range magnetic coupling, J�n�, present in the uniform sus-
ceptibility, ��T�, that does not appear in �loc�T�. This can be
better understood by splitting ��n� into20

��n� � T*�n� + J�n� . �24�

As the system is driven closer to the Mott insulating state:
n→1, ��n�→J�n� as T*�n�→0 which indicates the metal-
insulator transition. In this limit the system behaves as a
Heisenberg antiferromagnet with antiferromagnetic exchange
coupling given by J=4t2 /U, with U� �t�. A change of sign in
��n� happens at about n=1.3 in Fig. 7 signaling a ferromag-
netic exchange interaction. Indeed, this is approximately the
doping at which the ferromagnetic state is found for U
=10�t� �cf. Fig. 1�. Thus, as the electronic occupation in-
creases, ��n� changes from positive �antiferromagnetic� to
negative �ferromagnetic� when J�−T*. This is the threshold
ferromagnetic interaction for the “bad metal” to become fer-
romagnetic. At larger doping values the absolute yields of the
magnetic moment, �, become suppressed as the number of
unpaired electrons is reduced becoming �→0 as n→2
which coincides with the destruction of ferromagnetism.

In contrast to the rather unconventional metallic state
found for t�0, the magnetic susceptibility for t�0 is Pauli-
like, moderately enhanced by many-body effects. This can be
observed in the inset of Fig. 6 where a weak temperature
dependence for all n �for clarity only n=1.3 is shown� is
found. To be specific, for T��F the low temperature behav-
ior of the susceptibility for a noninteracting metal is given
by68

��T�
�0

� 1 + �	���F�
	��F�

−
	���F�2

	��F�2 �2

6
kB

2T2 + O�T4� , �25�

where 	��� is the density of states per spin and the primes
indicate derivatives of the DOS with respect to �. The non-
interacting susceptibility at zero temperature is given by �0
=2�B

2	��F�. For t�0 a direct evaluation of the term propor-
tional to T2 gives nearly zero for electron doping the trian-
gular lattice. Our numerical results agree with temperature
dependence given by Eq. �25�, with a moderate enhancement
of ��T� /�0 suggesting moderate many-body effects. Hence,
we conclude that the t�0 electron doped triangular lattice
behaves as a renormalized paramagnetic metal.

V. RENORMALIZATION OF QUASIPARTICLES FOR
DIFFERENT SIGNS OF t

DMFT typically predicts a metal-insulator transition as U
is increased to U /W�1 at half-filling.20 As soon as the sys-
tem is doped away from half-filling, the system becomes
metallic21 with electrons having their mass renormalized by
the Coulomb interaction. We find that the two different den-
sities of states corresponding to the two different signs of t
lead to different renormalizations of the quasiparticles al-
though W=9 � t� is the same for both DOS. This result is in
contrast to the half-filled and unfrustrated cases where the
results do not depend on the sign of t. This is because for
unfrustrated lattices particle-hole symmetry is respected,
whereas particle-hole symmetry is broken on the doped tri-
angular lattice. Half-filled frustrated lattices are not particle-
hole symmetric, but this asymmetry is suppressed at large U,
and particularly in the Mott insulating state.

In order to understand the electronic properties and differ-
ent magnetic behavior obtained for t�0 and t�0 �above�,
the imaginary part of the self-energy along the imaginary
axis, Im ��i�� for t�0 and t�0 is computed and shown in
Fig. 8 for U=10�t�. The quasiparticle weight can be extracted
from the slope of the self-energy,

Z = lim
�→0

�1 −
� Im ��i��

��i�� �−1

. �26�

The increasing slope at low frequencies of Im ��i�� as n
→1 indicates a stronger renormalization of the quasiparticles
as the system gets closer to the Mott metal-insulator transi-
tion. This behavior is apparent for both signs of t. However,
for t�0 electrons are more strongly renormalized than for
t�0. For example, for n=1.3 the slope of Im ��i�� as �
→0 is steeper by a factor of about 2 for t�0 than it is for
t�0.

FIG. 7. �Color online� Electron occupation dependence of the
coherence scale, T*�n�, the Curie-Weiss scale ��n� and the effective
moment in the uniform magnetic susceptibility, � for fixed U
=10�t� and t�0. These parameters are extracted by fitting the re-
sults of our DMFT calculations of magnetic susceptibilities to Eqs.
�22� and �23�. For these values of U and t ferromagnetism is ob-
served in the range 1.3�n�1.6 �cf. Fig. 1�. ��n��0 for n�1.3
and no ferromagnetism is found at these dopings. � decreases to
zero as n→2 as the density of unpaired electrons decreases. This
appears to be responsible for the absence of ferromagnetism for n
�1.6.
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A. Effective mass

The quasiparticle weight extracted from the self-energy as
a function of the Coulomb interaction U is shown in Fig. 9.
Z is compared for t�0 and t�0 when n=1.3. The effective
mass is defined by m*=mb /Z; where mb is the noninteracting
band mass. For U=10�t� we find for t�0, m*=1.5mb,
whereas for t�0, m*=3.4mb. For n=1 we find m*=4.0mb
independent of the sign of t. This is an important point as it
shows that for the same U /W the two different signs of t lead
to different renormalizations of the electrons. Within DMFT
this different renormalization of the quasiparticles can be un-
derstood from the fact that for electron doping the DOS close

to the Fermi energy is larger for t�0 than for t�0 �cf. the
bare DOS shown in Fig. 6�.

The different renormalization of the electrons found for
the different signs of t in the electron doped system is in
contrast to the very similar renormalization found in the half-
filled case �n=1� for which Z decreases rapidly and in the
same way for both t�0 and t�0, leading to a very similar
critical value of Uc�1.65W at which the Mott transition oc-
curs. This value is similar to DMFT estimates obtained for
the Bethe lattice,20 Uc��1.5−1.7�W. The value obtained
Uc=15�t� should be compared with the Uc�12�t� obtained
from exact diagonalization calculations for 12 site clusters.32

The similar critical values appearing at half filling can be
explained from the fact that as U→W, the spectral densities
at each site are strongly modified by the Coulomb interaction
washing out the fine details of the bare DOS. In contrast, for
the doped case, kinetic energy effects are important.

In Fig. 10 we show the variation of the effective mass
with n for U=10�t�. Strikingly the effective mass increases
when the system is doped off half-filling close to n=1 and
t�0 displaying a maximum at about n=1.07. This is in con-
trast to the t�0 case, and what has been found previously
for nonfrustrated lattices such as the hypercubic lattice, for
which the effective mass decreases as the system is doped
away from half-filling, reflecting reduced correlations. In
fact, for n�1.07 and t�0 the effective masses do decrease
with increasing n, reaching the noninteracting limit �Z→1�,
as n→2. A nonmonotonic behavior of the effective mass is
then found close to half-filling and t�0. This is in contrast
to the simple behavior encountered for the hole doped
�n�1� Mott insulator with a flat noninteracting DOS. In that
case, the effective mass behaves as20

m*/mb � 1/x , �27�

diverging at the Mott transition. This result can also be de-
rived from slave-boson theory.69

The effective mass increase with initial doping is a result
of the initial increase of the DOS for t�0 as �F moves closer

FIG. 8. �Color online� Comparison of the imaginary part of the
self-energy for t�0 with the same quantities with t�0. Results are
reported for U=10�t� and various electron dopings. The linear de-
pendence of the self-energy at low energies indicates Fermi liquid
behavior. The slope near i�=0 is used to extract the quasiparticle
weight Z, shown in Fig. 9.

FIG. 9. �Color online� Dependence of the quasiparticle weight Z
on the Coulomb repulsion U / �t� at various electron dopings. The
quasiparticles become more renormalized as the doping is de-
creased due to the proximity to the Mott transition. For a given
value of U, quasiparticles on the triangular lattice with t�0 are less
renormalized than for t�0. In contrast, for the half-filled case �n
=1�, we find the same behavior of Z for both t�0 and t�0 with a
Mott metal-insulator transition taking place at a common value
U /W�1.66.

FIG. 10. �Color online� The variation of the effective mass,
m* /mb=1/Z with doping n for both signs of t for U=10�t�. Notice
in particular the nonmonotonic variation of the effective mass with
n for t�0.
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to the van Hove singularity. The subsequent decrease in the
effective mass can be attributed to the decrease in the effec-
tive number of charge carriers which suppresses correlation
effects. It would be interesting to see whether slave boson
theory, with the DOS for the triangular lattice, could repro-
duce the nonmonotonic dependence of the quasiparticle
weight on doping. �This would involve solving Eqs. �8� and
�9� in Ref. 69.�

B. Sommerfeld-Wilson ratio

In order to explore the effect of magnetic exchange in the
metallic correlated state we analyze the Sommerfeld-Wilson
ratio,

RW = lim
T→0

��T�/�0

��T�/�0
=

1

1 + F0
a , �28�

where F0
a is the Fermi liquid parameter which is a measure

the proximity of the system to a ferromagnetic instability
�F0

a=−1 at the instability� and � /�0=1/Z. The dependence of
RW on the electron occupation factors are plotted in Fig. 11
for both t�0 and t�0. The ratio RW is the same at n=1 for
t�0 and t�0 but they behave very differently as the occu-
pation is increased. For the t�0 triangular lattice RW is
strongly enhanced signaling the proximity to a magnetic in-
stability at about n=1.35 and n=1.65 �see the phase diagram
in Fig. 1 for t�0�. For t�0, RW displays a maximum close
to n=1.5.

C. Spectral density

The different renormalization of the electrons for different
signs of t is translated onto a different redistribution of spec-
tral weight induced by the Coulomb interaction as the spec-
tral weight suppressed at the Fermi energy must be trans-
ferred to higher energies. We investigate this by computing
local spectral densities, A���=− 1

� Im G��+ i��, where � is
an arbitrarily small real number and

G�i�� = �
−�

� d�	���
i� + � − � − ��i��

. �29�

In Fig. 12 a comparison of the spectral density A��� with
the noninteracting DOS per spin, 	���, is made for the case
n=1.5 and U=10�t�. For these parameters ferromagnetism
occurs when t�0. Notice that within the ferromagnetic me-
tallic phase the spectral function of majority spin subband �↑�
is found to be renormalized more strongly than that of the
minority spin subband �↓�. The lower Hubbard band for spin
up electrons contains more spectral weight than the lower
Hubbard band for spin down electrons. One may view this
effect as originating from the preclusion of the hopping of a
minority spin hole to a neighboring site by the presence of a
minority spin hole.

D. Resistivity and Kadowaki-Woods ratio

Within the DMFT approximation the conductivity is
given by20

�T� =
e2�

�V
�

−�

�

d��− �f���
��

�
k

� ��k

�kx
2

A�k,��2,

�30�

where V is the volume. In the limit of low temperatures, T
→0, the resistivity becomes 	�AT2, with the A coefficient
given by

A =
�

e2

�C��

���F̃�I
. �31�

The dimensionless constant

FIG. 11. �Color online� The variation of the Sommerfeld-Wilson
ratio, RW=limT→0���T� /�0� / ���T� /�0� with doping n for both signs
of t for U=10�t�.

FIG. 12. �Color online� Spectral densities for U=10�t� and n
=1.5 for the triangular lattice with t�0 and t�0. The noninteract-
ing DOS is also shown �red line� for comparison and energies are
relative to the Fermi energy. The majority �↑� and minority �↓�
spectral densities for n=1.5 and t�0 are shown as the system is
ferromagnetic.
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I = �
−�

� ex

�x2 + �2��1 + ex�2 �
1

12
,

C� is the �2 coefficient of the imaginary part of the self-
energy, Im �����−�C����2+ ��T�2�, and ���̃F� is given by

���F̃� =
1

V
�
k
� ��k

�kx
2

���F̃ − �k� . �32�

In the above equations �̃F=�−Re ��0�=�F, where �F is the
Fermi energy of the noninteracting system70 for a given elec-
tron occupation n. From the T2 coefficient of the resistivity,
A, and the specific heat slope at low temperatures, �

=2�2kB
2Ã��̃F� /3=�2kB

2	��F� /Z, where Ã��̃F� and 	��F� are
the interacting and noninteracting quasiparticle density of
states per spin. We can now obtain the Kadowaki-Woods
ratio,

A

�2 =
�

e2

9�C��Z2

4���F��4kB
2I	��F�2 . �33�

The doping dependence of the Kadowaki-Woods ratio is
plotted in Fig. 13 comparing the t�0 and t�0 cases. The
figure displays the nonmonotonic dependence of the ratio
with electron occupation and also how different band struc-
tures can lead to different absolute values of the Kadowaki-
Woods ratio.

VI. FERROMAGNETISM

Nagaoka rigorously proved17 that the Hubbard model on a
connected lattice71 in the U→� limit displays ferromag-
netism when one hole �electron� is added to the half-filled
system when t�0 �t�0�. This is due to the fact that in this
case, the kinetic energy is minimized if all the spins are
aligned in the same direction. This rigorous treatment has not
been extended to doping by more than one hole and it re-
mains an outstanding problem to further understand this in-
teresting phenomenon.72

DMFT has proved to be an important tool to describe
ferromagnetism appearing due to local electronic correla-
tions. The possibility of Nagaoka or metallic ferromagnetism
in a hole doped infinite dimensional fcc lattice has been
previously analyzed within DMFT.73 More recently
DFT�LDA�+DMFT calculations �where DFT is density
functional theory and LDA is the local density approxima-
tion� have provided a realistic description of ferromagnetism
in Fe and Ni.74 Our calculations show that for sufficiently
large U and t�0 ferromagnetism occurs while the system is
still metallic as the spectral density at the Fermi energy is
always finite for nonzero doping �cf. Fig. 12�. In Fig. 14 we
show the sharp ferromagnetic transition in the T→0 limit for
t�0 obtained from our DMFT calculations.

Increasing U stabilizes the ferromagnetic region in a
broader electron occupation range. Ferromagnetism is found
to be more stable for 1�n�1.5 than for 1.5�n�2, indicat-
ing the importance of correlation effects as the system is
closer to the Mott insulating phase as n→1 and sufficiently
large U. The ferromagnetic transition is found to be sharp as
shown in Fig. 14 even at the lowest U value for n=1.5 where
the van Hove singularity occurs in the bare DOS. In contrast
for t�0 where, for electron doping, there is no van Hove
singularity we do not observe ferromagnetism. This is, of
course, rather reminiscent of a Stoner-type instability.

In order to explore the possibility of having Stoner ferro-
magnetism we can obtain the critical value Uc

S for ferromag-
netism from the Hartree-Fock �random phase approximation,
RPA� Stoner condition

Uc
S�n�	��F� = 1, �34�

where 	��F� is the bare DOS per spin. One would find
Uc

S�n=1.5�=0 and Uc
S�n=1�=5 for t�0 which are much

smaller values than the ones obtained from DMFT calcula-
tions �see Fig. 1�. Furthermore, from the Stoner condition we
would also expect a ferromagnetic instability at Uc

S�n=1.3�

FIG. 13. �Color online� The doping dependence of the
Kadowaki-Woods ratio A /�2 for t�0 and t�0 for fixed U=10�t�.
The lattice parameter, a=2.84 Å relevant to NaxCoO2 has been
used. Note the nonmonotonic doping dependence of the ratio and
the fact that even at half-filling the ratios are different for the dif-
ferent signs of t.

FIG. 14. �Color online� Ferromagnetism in the electron doped
t�0 triangular lattice from DMFT. The magnitude of the spontane-
ous magnetic moment is shown as a function of the electron occu-
pation n. As U is increased above Uc�n� the system magnetizes
spontaneously stabilizing a ferromagnetic metal in a broad doping
region. Ferromagnetism does not appear in the electron doped t
�0 triangular lattice.
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=5.26 and Uc
S�n=1.90�=10 for t�0. Clearly, simple Stoner

ferromagnetism is inconsistent with our DMFT results not
only at the quantitative but also qualitative level as the
Stoner criterion would predict ferromagnetism for both signs
of t for sufficiently large, but finite, values of U. Stoner
theory is known to overestimate ferromagnetic tenden-
cies.75,76 In the present case, it would predict ferromagnetism
for t�0 in contrast to the more sophisticated DMFT treat-
ment. This difference can be attributed to the on-site dynami-
cal correlation effects which strongly redistribute the spectral
weight of the electrons and that are not taken into account in
standard mean-field theories.

Vollhardt et al.76 have given a nice review of the essential
features of Hubbard models that are favorable towards to
ferromagnetism. �i� The energy dependence of the density of
states near the Fermi energy should be sufficiently asymmet-
ric, with the DOS being larger towards the top �bottom� of
the band for electron �hole� doping. A flat band system with
a singular DOS at the upper �lower� edge the most favorable
for ferromagnetism. Then the increase in electronic kinetic
energy associated with spin polarization is smaller than for a
constant DOS. �ii� Strong Coulomb interactions narrow the
bands. Less narrowing occurs for the polarized case because
polarization reduces the effect of correlations.

Our DOS is not of the flat band type, however, the energy
cost in completely polarizing the noninteracting electron
doped system for t�0 is found to be much smaller than for
t�0. Indeed, for an electron doped system this is given by

�E = 2�
�0

�max

d��	��� − �
�p

�max

d��	��� , �35�

which should be negative if ferromagnetism is stable. The
chemical potentials, �0 and �p, correspond to the unpolar-
ized and fully polarized systems, respectively and �max is the
energy at the upper edge of the band. Inserting 	��� for t
�0 in expression �35� with n=1.3 we obtain �E=0.603�t�, to
be compared with �E=1.34�t� for t�0. Interestingly, for the
square lattice, �E=0.8�t�, which is between the values of �E
for the t�0 and t�0 triangular lattices. Hence, although
unsurprisingly ferromagnetism is not stable for the noninter-
acting system regardless of the sign of t, the ferromagnetic
tendencies are clearly stronger in the electron doped triangu-
lar lattice for t�0 than they are for t�0 in agreement with
the conclusions derived from the three site cluster analysis
�Sec. II D and Fig. 2�.

Finally, it is worth comparing previous studies of the t-J
model on the triangular lattice with our DMFT results. A
Curie-Weiss metal as well as ferromagnetism have been pre-
viously found from calculations using high temperature se-
ries expansions, for the hole doped triangular t-J model.45

Our results for the electron doped lattice are equivalent to the
hole doped case discussed in Ref. 45 once the sign of t is
reversed. More specifically, ferromagnetism and Curie-Weiss
metallic behavior appear in the high temperature expansion
for the hole doped system with t�0 while a weak tempera-
ture dependent susceptibility appears when t�0. Further-
more, a heavy fermion state, analogous to our strongly cor-
related metallic state for t�0, is predicted to exist in the hole

doped system with t�0. The qualitative agreement of the
magnetic response obtained from DMFT compared with the
high temperature studies �which includes both local and non-
local correlation effects� of the t-J model indicate the impor-
tance of the local aspects of electronic correlations. This has
also been pointed out in the context of metallic magnetism
for which a good a description of the electronic and magnetic
properties of Fe and Ni is attained from a local theory such
as DMFT.74

VII. COMPARISON WITH EXPERIMENTS ON NaxCoO2

As this work has been largely motivated by experiments
on NaxCoO2 we now consider what the lessons learned from
a DMFT study of the Hubbard model on a triangular lattice
might have to say about NaxCoO2. First, our results show
that the details of the electronic structure, and in particular
the DOS, play a crucial role in determining the physics of
strongly correlated frustrated systems such as NaxCoO2. This
is something of a pyrrhic victory in that this very result tells
us that there is little hope of quantitative agreement between
experiments on NaxCoO2 and calculations based on a simpli-
fied one band models with nearest neighbor hopping only,
such as those presented above. Indeed our results do not
show any such quantitative agreement.

In particular for the triangular lattice with t�0 �which, of
the two cases we considered, gives the band structure closest
to those suggested by both ARPES and LDA-DFT� the
DMFT of the electron doped Hubbard model closely re-
sembles a weakly interacting metal. This is clearly not what
is observed in NaxCoO2, even at a qualitative level.

On the other hand many of the results for t�0 are quali-
tatively consistent with the picture drawn by experiments on
NaxCoO2. In particular we propose that the experimental
“Curie-Weiss metal” is little more than the “bad metal” in the
extreme situation of very strong electronic correlations and
high frustration. Important experimental support for this hy-
pothesis comes from the fact that a Fermi liquidlike resistiv-
ity has only been observed18 when T
1 K which suggests
that T*�1 K. An obvious objection, that T* predicted by
DMFT will not be this small for any reasonable parameters,
will be discussed below �Sec. VIII A 1�.

Our results for t�0 show that magnetism is a genuinely
quantum many-body effect, in particular the magnetism has
little resemblance to simple Stoner ferromagnetism. We pro-
pose that the observed A-type antiferromagnetism results
from in plane Nagaoka ferromagnetism with a weak inter-
layer antiferromagnetic coupling. The observation14,15 that
the strength of the effective in-plane ferromagnetic coupling
in NaxCoO2 is the same order of magnitude as the effective
interlayer antiferromagnetic interaction despite the highly
two-dimensional crystal and band structures of NaxCoO2 is
naturally explained in this scenario as the effective ferromag-
netic interaction in the Nagaoka is much weaker than the
intrinsic antiferromagnetic interaction which gives rise to the
phase. This can be seen from Fig. 10, here ��n� becomes
positive and ferromagnetism is suppressed by reducing the
doping towards the critical doping which is the lower bound
for which ferromagnetism is observed. The intrinsic antifer-
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romagnetic interactions due to superexchange are given by
J=4t2 /U=0.4�t� for U=10�t�, which we take in the calcula-
tions above. Therefore even though J=4t2 /U�J�=4t�

2 /U,
where J� and t� are, respectively, the interplane exchange
constant and hopping integral, near the phase transition to
ferromagnetism J���n� and thus the interplane antiferro-
magnetic exchange may be the same order of magnitude as
the in-plane ferromagnetic exchange, as is observed experi-
mentally in NaxCoO2.

To qualitatively test these ideas calculations with a more
realistic band structure are required. LDA calculations pre-
dict that the dispersion of the bands is rather different to the
dispersion obtained from a nearest-neighbor isotropic trian-
gular lattice. In particular the LDA band is much flatter close
to the � point. Indeed this is just the sort of change that is
likely to have a significant effect on the results of the type of
calculations we have presented above. In the current work
we have also neglected the possibility of Fermi surface pock-
ets near the K points arising from the e2g� band.47,48 Recall
that, for example, we demonstrated that the magnetism and
Curie-Weiss metal behavior we observed in the triangular
lattice depend crucially on the DOS near to the Fermi level
and not just on the DOS at the Fermi energy. Therefore, even
if this band does not actually cross the Fermi energy, as some
studies have indicated,46,51 it may play an important role in
NaxCoO2. Interestingly, the e2g� band can be fitted to a t�0
tight-binding model close to the Fermi energy. Hence, the e2g�
bands may play an important role in producing the Curie-
Weiss metallic state. Anyway, the generalization of these re-
sults to multiband systems52 is likely to be important for a
complete understanding on the magnetic and transport prop-
erties of NaxCoO2.

To quantify these remarks we now present a comparison
of the DMFT results for the triangular lattice with the experi-
mentally measured properties of NaxCoO2.

A. Electronic heat capacity

The experimental77,78 value of the linear T coefficient of
the specific heat �Cv��T for T�T* with T*=1 K� in
NaxCoO2 and 0.7�x�0.82 is �=25–30 mJ/ �mol K2� in
zero magnetic field. This corresponds to an effective mass
enhancement m* /mb�3–4 where mb is the LDA band mass.
On applying an external magnetic field of H=14 T, � is sup-
pressed leading to �=0.02 J / �mol K2� �Ref. 77� implying at
20–30% a decrease in m*. The observed temperature and
magnetic field dependence also has two unusual features. In
zero field, Cv�T� /T is nonmonotonic, but becomes mono-
tonic in a field of 14 T �see Fig. 3 in Ref. 77�. The reduction
of Cv�T� /T as the temperature increases from 1 to 5 K is
consistent with the destruction of quasiparticles in this tem-
perature range �compare Fig. 37 in Ref. 20�

Our DMFT calculations for n=1.7 and U=10�t�, predict a
weak renormalization of the electrons, m* /mb�1.1, for t
�0 and m* /m�1.5 for t�0. However, in the discussion to
follow it will be important to note that as the system is
driven towards half filling, n→1, we find effective mass en-
hancements which are comparable to or larger than experi-
mental values �see Fig. 10�. Note that effective mass en-

hancement for t�0 is rapidly suppressed �Fig. 10� as n is
increased above n�1.2 becoming effectively a weakly cor-
related metal for this doping region. But, for t�0 we find
that the mass enhancement remains large to much higher
dopings than for t�0 �for t�0 the mass enhancement is
comparable or greater than that observed experimentally for
x
1.5�.

B. Low-temperature resistivity

Experimentally,18 the resistivity varies as, 	�T��	0

+AT2, as is expected for Fermi liquid, below T�1 K. The
coefficient of the quadratic term is measured18 to be A
=0.96 �� cm/K2 for Na0.7CoO2. On applying an external
magnetic field up to H=16 T, the quadratic coefficient of
resistivity is decreased to A=0.22 �� cm/K2 and T* is in-
creased to 4 K.

DMFT predicts Fermi liquid behavior below T*, the low
energy coherence scale. The resistivity coefficient predicted
by DMFT is A=0.0053 �� cm/K2 for t�0, n=1.7 and U
=10�t�, which is more than two orders of magnitude smaller
than the experimental value. However, at half-filling and U
=10�t�, A=0.81 �� cm/K2, which is comparable to the ex-
perimental result. For t�0, n=1.7 and U=10�t� we find A
=0.32 �� cm/K2, which is the same order of magnitude as
in experiments of NaxCoO2. Therefore, either the details of
the DOS or driving the system towards the Mott transition
could be responsible for the large value of A observed ex-
perimentally. However it is important to stress that in our
calculations the coherence scale, T*�100 K for U=10�t� at
half-filling, is two orders of magnitude larger than the tem-
perature below which 	�T��	0+AT2 in the experiments.18

We will discuss the reasons for this below �see Sec.
VIII A 1�.

C. Kadowaki-Woods ratio

The Kadowaki-Woods ratio of Na0.7CoOx is experi-
mentally found18 to be A /�2=60a0, with a0=10−5

�� cm mol2 K2/mJ2 being the constant value found in the
heavy-fermion materials. The large values of the ratio have
been recently discussed by Hussey,19 who explained that
when volumetric rather than molar quantities for the specific
heat, the values of A /�2 are comparable to the ones in the
heavy fermion systems. From the DMFT calculations with
t�0 we find that A /�2=64.2a0 for n=1.7 whereas at half-
filling A /�2=75a0, implying a weak dependence with the
electron doping. A stronger dependence is found from DMFT
for t�0 for which the ratios vary between A /�2=100a0 for
n=1.7 and 170a0 at half-filling �see Fig. 13�. Thus, the ab-
solute values depend strongly on the DOS.

D. Uniform magnetic susceptibility

Experimentally, the magnetic susceptibility is found to
have a Curie-Weiss form, ��T��1/ �T+��, and a magnitude
much larger than the Pauli susceptibility expected for weakly
interacting metal across a large range of dopings that have
metallic ground states.8,11 Our DMFT calculations for t�0
display Pauli paramagnetism, which is typical of weakly cor-
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related metals, in qualitative disagreement with experiments.
However, for t�0 a Curie-Weiss metal is observed across a
wide range of dopings. In the discussion that follows it will
be important to recall that the DMFT prediction of the sus-
ceptibility of a metal close to the Mott transition is that it has
the Curie-Weiss form with �=T*+J�0. Thus, a behavior
similar to the experimentally observed Curie-Weiss metal is
predicted by DMFT for t�0 �i.e., when 	��F� is large� and
near to the Mott transition.

E. Sommerfeld-Wilson ratio

The experimentally measured Sommerfeld-Wilson ratio79

of Na0.7CoO2 is RW=limT→0���T� /�0� / �� /�0�=7.8. For the
hypercubic lattice, the Wilson ratio predicted by DMFT goes
to zero close to the Mott transition, i.e., at half-filling, but
becomes finite as soon as the system is doped away from
half-filling.20 On the triangular lattice with t�0 we find that
the Wilson ratio attains its largest values at n=1.6 at which
RW=1.7 and decreases to 1.3 as n→2 with U=10�t�. In the
limit n→1, the calculated RW=0.8. On the other hand for t
�0, RW becomes extremely large at dopings close to the
ferromagnetic instability. For example, for n�1.65, RW is
already about 6. One should note that experimentally, x
=0.7 is extremely close to the critical doping at which the
A-type antiferromagnetism appears. Therefore the large
Sommerfeld-Wilson ratio observed is probably a direct con-
sequence of the proximity of Na0.7CoO2 to the magnetic
transition. This analysis would also suggest that as the dop-
ing is decreased from x=0.7 then RW will also decrease,
although calculations with a more realistic band structure are
required to confirm that DMFT makes this prediction.

F. Effect of a small external magnetic field on the low-T
resistivity, A, and specific heat, �, coefficients

A rapid suppression of the low-T resistivity coefficient A
and specific heat slope � and an increase in T* are observed
when an external small magnetic field is applied to NaxCoO2.
�The details of the experimental observations of the behavior
of � �Ref. 77� and A �Ref. 18� are summarized in Secs. VII A
and VII B, respectively.�

For the single impurity Kondo model the temperature de-
pendence of the heat capacity has a maximum near the
Kondo temperature. In a magnetic field, once the Zeeman
energy, g�BB, is comparable to the Kondo energy, kBTK, this
maximum shifts to higher temperatures.80,81 Based on this we
would expect that the coherence temperature becomes larger
with increasing field.

DMFT for the Hubbard model in a magnetic field shows
that in the metallic phase of a weakly interacting metal the
quasiparticle weight Z increases with field, consistent with
the predictions of Stoner theory �see Fig. 5 of Ref. 58�. Con-
sequently, the specific heat coefficent � will decrease with
field. Similarily, the resistivity coefficient A will also de-
crease. In contrast, a strongly correlated metal close to the
Mott transition displays a weak suppression with magnetic
field �see inset of Fig. 9 in Ref. 58�.

G. Failure of one band models with nearest neighbor hopping

The disagreements highlighted above between the one
band model with nearest neighbor hopping and experiments
on NaxCoO2, particularly for t�0 which is the appropriate
sign of t for NaxCoO2, does not appear to be a result of the
DFMT approximation. Our results are entirely consistent
with the series expansions45 and RVB �Ref. 23� results for
the t−J model on a triangular lattice in this regard. Therefore
we believe that simple one band models with nearest neigh-
bor hopping cannot only account for the observed behavior
of NaxCoO2. This is an extremely important result given the
number of theoretical papers on both NaxCoO2 and
NaxCoO2·yH2O that are based on this type of model. In the
next section we examine what kind of models or approxima-
tions are required to give an account of the strong correlation
effects in NaxCoO2.

VIII. MORE REALISTIC MODELS OF NaxCoO2

A. Beyond DMFT

Although DMFT calculations on the triangular lattice sug-
gest the proximity of the metal to a Mott insulating phase
several aspects of the observed low temperature behavior of
NaxCoO2 are still difficult to understand. Foremost among
these is why is the value of T* estimated from resistivity so
much smaller than the obtained from the susceptibility and
DMFT?

The experimental value for the coherence temperature,
T*=1 K, as determined from the temperature below which
	�T�=	0+AT2, is two orders of magnitude smaller than the
DMFT result, T*�0.1�t��100 K for U=10�t� at half-filling.
For t�0 there is only a weak increase in T* with doping �see
Fig. 5�. Driving the system closer to the Mott transition by
increasing U would lead to a strong suppression of T*, e.g.,
T*→0 as U→Uc at half-filling. On the other hand, the val-
ues of T* predicted by DMFT are comparable with values of
��150 K found experimentally8 from the Curie-Weiss fit of
the spin susceptibility, ��T��1/ �T+��, at large tempera-
tures.

Spin susceptibility experiments on NaxCoO2 show a clear
departure from the simple high temperature Curie-Weiss sus-
ceptibility at temperatures of order the coherence tempera-
ture predicted by DMFT �but orders of magnitude above the
temperature where the resistivity is observed to vary qua-
dratically with temperature�. Below this temperature the spin
susceptibility is strongly enhanced in contrast to the DMFT
prediction of a Pauli susceptibility below T*. Although on
this front one should beware of the major differences12 be-
tween the susceptibilities measured by Foo et al.8 and those
measured by Prabhakaran et al.11

Spin fluctuations: All of the results presented in this paper
were obtained from a purely local theory, DMFT. Therefore
these results neglect short range ferromagnetic fluctuations
which are likely to become increasingly important as one
dopes towards the ferromagnetic phase. Indeed such ferro-
magnetic fluctuations have already been observed by neutron
scattering in Na0.7CoO2.13–15

The importance of these fluctuations can be addressed
within Moriya’s82 spin fluctuation theory of the electronic
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and magnetic properties of nearly ferromagnetic metals. The
theory assumes that the dynamic spin susceptibility has the
form

��q,�� =
��q = 0,� = 0�

1 +  2�q2 −
i�

�q
 �36�

in two dimensions.  is the ferromagnetic correlation length
and � is a phenomenological parameter. This has the same
frequency and wave vector dependence as one obtains from a
RPA treatment of a Fermi liquid metal.

Within this framework, the electronic properties can be
sensitive to an applied magnetic field as, at low temperatures,
it suppresses the ferromagnetic fluctuations, driving the sys-
tem into an unrenormalized Fermi liquid state. The low tem-
perature scale T0 is defined by82

T0 =
�qB

3

2�
, �37�

where �qB
2 is a measure of the area of the first Brillouin

zone.
The spin susceptibility is enhanced as the temperature is

lowered departing from the Curie-Weiss law as a result of the
enhancement of ferromagnetic fluctuations at low tempera-
tures. Also a small magnetic field is expected to rapidly sup-
press A and � as experimentally observed in NaxCoO2. The
above arguments are consistent with evidence of strong fer-
romagnetic fluctuations acting in the Co planes for x�0.75
from recent neutron scattering experiments.13 In order to de-
termine the importance of these spatial correlations it is de-
sirable to compare the measurements of  �q ,�� in Ref. 13
with the form �36�. If at a frequency � one observes a peak
of width 1/ in wave vector space, then T0���qB �3. One
sees from Figs. 1 and 4 in Ref. 13 that for ��10 meV that
qB �0.4. Hence, T0�1–10 K and so the ferromagnetic
fluctuations could be the origin of the low energy scale in
NaxCoO2.

B. Beyond the single band Hubbard model

1. Role of ordering of the sodium ions

We believe that the A-type antiferromagnetic phase ob-
served experimentally corresponds to the ferromagnetic
phase predicted by DMFT and many of the metallic state
properties can be interpreted in terms of their proximity to a
ferromagnetic transition and strong Coulomb repulsion ef-
fects. However, a number of experiments suggest that
NaxCoO2 behaves like it is more strongly correlated as the
doping, x, is increased. These results are difficult to under-
stand from a simple model which only contains the Co
planes as such models become more weakly correlated as the
electronic doping is increased due to the small number of
holes left in the Co planes. Below we propose that the order-
ing of the Na atoms observed at many dopings provides a
natural explanation of these effects as it can effectively drive
the system towards half filling by introducing a spatial
modulation of the site energy of the Co atoms. The sugges-

tion that Na ordering plays a crucial role that has not been
appreciated until now is made more plausible by the very
sensitive dependence of the magnetic and transport proper-
ties on the exact details of the DOS that we have demon-
strated above.

It seems likely that the charge ordering of the electrons in
the CoO2 layers observed at x=0.5 is induced by Na
ordering.8 Recently, experimental studies by Zandbergen et
al.83 and Roger et al.,84 first principles calculations by Zhang
et al.85 and classical electrostatic calculations by Zhang et al.
and Roger et al. have shown that as x is varied not only is the
doping of the CoO2 planes varied, but so is the Na ordering.
However, there remains debate over the exact nature of the
Na order at specific values of x.83–85 There is additional evi-
dence from NMR experiments of the presence of inequiva-
lently charged Co ions with Co3+ �S=0� and Co4+ �S=1/2�
induced by the charged Na layer of ions.79 This effect im-
plies that a large fraction of the electrons in the Co planes
behave as S=1/2 localized moments. This is precisely the
behavior expected close to the Mott insulating phase in a
Hubbard model close to half-filling as described by DMFT.

To make this proposal more concrete we analyze four
special cases, x=0.33, 0.5, 0.71, and 0.75. For each of these
we take the orderings proposed by Zhang et al.85 and Zand-
bergen et al.83 although we note that in two of these cases
�x=0.71 and 0.75� Roger et al. have proposed different Na
ordering patterns which involve the formation of “vacancy
droplets.” We stress that this work has nothing to contribute
to the debate over which patterns are, in fact, realized and we
take these patterns at x=0.71 and 0.75 merely to exemplify
our point. In the cases of x=0.33 and 0.5 we find that the Na
ordering introduces two Co sublattices while for x=0.71 we
find three Co sublattices and for x=0.75 we find four Co
sublattices. For this analysis one needs to consider the two
possible locations of Na in NaxCoO2, referred to as Na�1�
and Na�2�.83 The CoO2 planes are at z=0.25c, where c is the
lattice constant perpendicular to the cobaltate layers. The
Na�1� sites lie directly above �at z=0.5c� and below �z=0�
the Co atoms, while the Na�2� sites are above or below the
centres of the triangles in the triangular lattice formed by the
Co atoms. The simplest model which can include the effects
Na ordering is a Hubbard model which includes the Co site
energy modulated by the number of nearest Na sites that are
occupied. Clearly, one expects that occupied Na�1� and
Na�2� will modulate the Co site energy by different amounts
which we denote !1 and !2, respectively. If � is the chemical
potential for x=0 the Hamiltonian is then given by

H = �
i,

�N1i!1 + N2i!2 − ��ni − t �
�ij	,

�ci
† cj + H.c.�

+ U�
i

ni↑ni↓, �38�

where N1i and N2i give the number of occupied nearest
neighbor Na�1� and Na�2� sites, respectively. This model as-
sumes that the electronic degrees of freedom relax on much
shorter time scales than the Na ions move, which is reason-
able because of the relative masses, even though the effective
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quasiparticles mass is an order of magnitude larger than the
bare electronic mass.

To simplify our notation we now introduce the following
nomenclature:

!A = !2 − � , !B = 2!2 − � , !C = 3!2 − � , !D = 4!2 − � ,

!P = !1 + !2 − � , !Q = !1 + 2!2 − � , !R = !1 + 3!2 − � .

�39�

This allows us to sketch the relevant lattices in Fig. 15. It can
be seen that for x=0.33 we have a honeycomb lattice of sites

with site energy !A with the central sites in the lattice having
site energy !P. For x=0.5 the lattice contains alternating
chains of sites with site energy !B and !P. With x=0.71 we
find the lattice contains sites with site energies !D, !P, and !Q
with all three sublattices forming stripes. For x=0.75 a com-
plicated arrangement of interlaced stripes of sites with site
energies !C, !P, !Q, and !R is formed. This model �38� will
clearly make very different predictions from the Hubbard
model if the variations in the site energies caused by Na
ordering are sufficiently large. For example for x=0.5 and
!P�!B �as one might expect� and U�W a charge ordered
insulator is likely to be the ground state of Hamiltonian �38�,
this is the state observed in Na0.5CoO2. Roger et al. have
estimated from classical electrostatics that �!
!P−!B
�100 meV which is consistent with this scenario. Further-
more, this kind of effect will drive the system closer to Mott
insulating phase if the occupation of one or more of the
sublattices is strongly suppressed. Thus we expect that the
DMFT treatment of �38� will have significantly better quali-
tative agreement with the experimentally observed properties
of NaxCoO2 than the DMFT treatment of the Hubbard model
on a triangular lattice does. Finally we note that, if one of the
sublattices of x=0.5 can be “integrated out” of the effective
low energy theory due to a large disparity in the site energies
we are left with a Mott insulator on a rectangular lattice.
Along one side �the horizontal direction in Fig. 15� of the
rectangle it can be seen that the antiferromagnetic exchange
constant is J=4t2 /U. In a similar manner superexchange
leads to an exchange constant

J� =
16t4

�!2� 1

U
+

1

2�! + U
+

1

2�!
� �40�

in the perpendicular direction. Additionally there is a �diag-
onal� next nearest neighbor exchange interaction

J� =
4t4

�!2� 1

U
+

2

2�! + U
� . �41�

It is interesting to consider the three limiting cases:

for U ��!,
J�

J
=

2t2U

��!�3 and
J�

J�
=

3�!

2U
� 1;

for U ��!,
J�

J
=

4t2

��!�2 � 1 and
J�

J�
= 4;

for U = �!,
J�

J
=

6t2

U2 � 1 and
J�

J�
=

5

18
.

In particular note that for U��! we may have J��J. Neu-
tron scattering experiments suggest that the charge ordered
phase of Na0.5CoO2 has long range Néel order86 which sug-
gests J�J��J� and is therefore consistent with this model
when U��!� t, which is precisely the regime that the sepa-
rate estimates of these three parameters suggest we are in.

Before moving on from the effects of Na ordering it is
interesting to note that this type of problem is actually rather
general in doped systems. For example, in most models of
the cuprates it is assumed that the only effect of varying the

FIG. 15. �Color online� Different sublattices of cobalt ions due
to commensurate ordering of sodium ions. Pictorial representation
of the Hamiltonians given by Eq. �38� are shown for x=0.33, 0.5,
0.71, and 0.75. The different letters denote the different site ener-
gies defined by Eq. �39�, so that, for example a P represents a site
with site energy !P. These different site energies result from the
different Na order patterns, which have been observed experimen-
tally �Ref. 83� and predicted from first principles calculations �Ref.
85�. The Na ordering for the quoted filling factors are taken to be
those shown in Fig. 2 of Ref. 85. Note that Roger et al. �Ref. 84�
proposed different ordering patterns for x=0.71 and 0.75, which
involved “vacancy clustering.”
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doping is to vary the electronic density in the CoO2 layers.
However, if it is confirmed that Na ordering plays the role
we have proposed in NaxCoO2 then this may be an important
step towards a general understanding of the role of dopant
impurities in strongly correlated systems.

We stress that the above proposal relies on Na ordering
and not disorder. It is well known that disorder only plays a
significant role in DMFT when there are rather extreme lev-
els of disorder.87 Therefore one would not expect our results
to be significantly affected by the low levels of disorder typi-
cally found in NaxCoO2. However, recently the role of dis-
order on the band structure of NaxCoO2 has received some
attention.88 If disorder does induce significant changes in the
DOS this would be an important factor for the results re-
ported in this paper. More generally, the role of disorder in
NaxCoO2·yH2O will no doubt prove an important probe of
whether the superconducting state is conventional or not.89

2. Multiple bands

The model, as written in Eq. �38�, only contains a single
band. As discussed in the above band structure calculations
suggest a simple one band model is not sufficient to describe
the band structure of NaxCoO2. Although the a1g band can be
roughly fitted to a tight-binding model with t�0 which is
consistent with the large hole pocket around the � point,
additional small hole pockets may be present in the Fermi
surface associated with the e2g� bands crossing the Fermi en-
ergy. These bands can be fitted to a t�0 tight-binding band
which is likely to favor ferromagnetism. Such a multiband
model is a straightforward generalization of �38� giving

H = �
i"

�N1i"!1 + N2i"!2 − �"�ni"

− �
ij""�

tij""��ci"
† cj"� + H.c.� + �

i""�

U""�ni"ni"��,

�42�

where the labels " and "� refer the different orbitals. A multi-
band DMFT treatment is likely to describe both of the fol-
lowing effects: �i� the proximity of the metal to a Mott insu-
lating phase leading to renormalized quasiparticles and
Curie-Weiss behavior for T�T* and �ii� the strong ferromag-
netic fluctuations appearing at very low temperatures. Sev-
eral models have been recently proposed to describe
NaxCoO2. In comparison to single band23,36 and multiband
Hubbard models,48,49,52 our proposed model explicitly con-
tains the periodic potential of the Na layers acting on the Co
planes in combination with the Coulomb interaction. This is
an important ingredient to understand the unexpected Curie-
Weiss susceptibility and large effective mass at x→0.7. At
these large dopings the system is expected to behave as a
weakly correlated metal. We believe that our model is suffi-
cient to fully understand the interplay between these two
essential ingredients of the problem.

The problem of applying DMFT to a Hubbard model with
two inequivalent sublattices has been considered before. Chi-
tra and Kotliar90 considered the Hubbard model at half filling
in the presence of antiferromagnetic order. This leads to a
different chemical potential on the two sublattices. Bulla and

co-workers91 considered charge ordering in the extended
Hubbard model at one-quarter filling. For the case of the
Bethe lattice the model was mapped to a pair of Anderson
impurity models, one for each of the two sublattices. For V
�the Coulomb repulsion between electrons on neighboring
lattice sites� larger than about t and U=2t the quasiparticle
weight �and presumably the coherence temperature also� is
orders of magnitude smaller than the noninteracting value
and there is a pseudogap in the density of states. Based on
the above we would expect that for x=0.5 the ground state
will be an insulator if �!P−!B��U� �t� due to the two differ-
ent sublattices.

IX. CONCLUSIONS

We have presented a DMFT analysis of the electronic and
magnetic properties of the doped isotropic triangular Hub-
bard model. An important result of our work is the large
effect of the bare DOS on its magnetic and electronic prop-
erties. In particular, a Curie-Weiss metal is found for t�0
and U�W. In contrast, Pauli paramagnetism is found for t
�0 regardless of the magnitude of U. We find a larger de-
gree of localization and a larger renormalization of the elec-
trons for t�0 than for t�0 due to the different DOS at the
Fermi energy. The spin susceptibility crosses over from
Curie-Weiss behavior, at large temperatures, to a renormal-
ized Fermi liquid as T→0. At low temperatures, the uniform
spin susceptibility is strongly enhanced for t�0 due to the
proximity to the ferromagnetic transition. This is in contrast
to the behavior for t�0, for which only a small enhancement
of ��T→0� /�0 is found. The stronger renormalization of the
quasiparticles found for t�0 than for t�0 when the system
is doped away from half-filling is a consequence of a larger
DOS near the Fermi energy in the t�0 case.

For t�0 we find a metallic ferromagnetic state when U is
sufficiently large. The ferromagnetism is significantly differ-
ent from Stoner ferromagnetism in that it has a strong local
moment character and the criterion for ferromagnetism is not
simply related to the DOS at the Fermi level, but depends on
the features of the DOS over a significant energy range
around the Fermi level. No ferromagnetism has been found
for any band filling or any value of U when t�0, which is
qualitatively different from the prediction of Stoner theory.
We conclude that the ferromagnetism we have observed is
much more closely related to Nagaoka ferromagnetism. The
different behavior of the two lattices is due to kinetic energy
frustration which dramatically reduces the energy cost of po-
larizing the system for t�0. We have therefore proposed that
the A-type antiferromagnetic phase observed in NaxCoO2 for
x�0.75 is the result of in plane Nagaoka-type ferromag-
netism.

The different behaviors encountered away from half-
filling for the different signs of t contrasts with the system
sufficiently close to the Mott insulating phase �n→1 and U
�Uc or U→Uc and n=1�. In this case, the model displays
very similar properties including Curie-Weiss susceptibility
with ��0 �due to antiferromagnetic superexchange interac-
tion close to half-filling�, a large effective mass enhance-
ment, �m* /mb=5 for U=10�t��, large low-T resistivity coef-
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ficient, and enhanced Kadowaki-Woods ratio.
Thus our results show that the details of the band structure

are extremely important for understanding the metallic and
spin ordered phases of NaxCoO2. In particular, a simple one-
band Hubbard model on a triangular lattice is not enough to
understand the unconventional properties of NaxCoO2. Our
results however do suggest that the Curie-Weiss susceptibil-
ity observed in the metallic phase of NaxCoO2 results from
incoherent quasilocalized electrons. Remarkably, the DMFT
estimate of T*=0.1�t��100–200 K is in good agreement
with the Curie-Weiss constant ��150 K experimentally
measured.

Many of the thermodynamic and transport properties ob-
served in NaxCoO2, for large x, are consistent with the
DMFT prediction of the transport and magnetic properties of
the metal very close to the Mott transition. We have proposed
that Mott physics is relevant to NaxCoO2 even when x is
large and the system is far away from the Mott insulating
phase because of experimental observation of charge order-
ing in the Co planes.

The T dependence of several transport and magnetic prop-
erties is consistent with the DMFT description of a metal
close to the Mott transition for T�T*. However, at very low
temperatures, experimental observations on NaxCoO2, depart
from our DMFT results. For instance, the susceptibility de-
viates significantly from the Curie-Weiss behavior being
strongly enhanced below T�80 K. Also transport and ther-
modynamic quantities are very sensitive to a small applied
magnetic field. One is tempted to associate the very low
temperature scale of about 1 K experimentally determined to
the DMFT coherence scale, T*, which goes to 0 as the sys-
tem approaches the Mott insulating state. However, such a
small value of T* implies an extremely large effective mass
enhancement in clear disagreement with experimental val-
ues, m* /mb�3–4. We conclude that this very small energy
scale is due to low energy ferromagnetic fluctuations in the
Co planes which are neglected within the DMFT. These fluc-

tuations would scatter the strongly renormalized quasiparti-
cles which are properly described by DMFT.

We have then used this analysis to help identify the sim-
plest relevant model that captures the essential physics in
NaxCoO2. We have proposed a model which contains the
charge ordering phenomena observed in the system that we
have proposed drive the system close to the Mott insulating
phase for the large dopings. Band structure calculations find
that the a1g band can be roughly fitted to a tight-binding
model with t�0 which roughly describes the large hole
pocket around the � point. Additional small hole pockets
may be present in the Fermi surface associated with the e2g�
bands crossing the Fermi energy. These bands can be fitted to
a t�0 tight-binding band for which ferromagnetic fluctua-
tions are likely to exist. Hence, a multiband DMFT treatment
containing the a1g and e2g� bands as well as charge ordering
phenomena should describe both the following aspects: �i�
the proximity of the metal to a Mott insulating phase leading
to renormalized quasiparticles and Curie-Weiss behavior for
T�T* and �ii� the strong ferromagnetic fluctuations appear-
ing at low temperatures. We believe that a model including
both of these ingredients is needed to fully understand the
physics of NaxCoO2.
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