5 research outputs found

    The Binding of Factor H to a Complex of Physiological Polyanions and C3b on Cells Is Impaired in Atypical Hemolytic Uremic Syndrome

    Get PDF
    Factor H (fH) is essential for complement homeostasis in fluid-phase and on surfaces. Its two C-terminal domains (CCP 19-20) anchor fH to self surfaces where it prevents C3b amplification in a process requiring its N-terminal four domains. In atypical hemolytic uremic syndrome (aHUS), mutations clustering towards the C-terminus of fH may disrupt interactions with surface-associated C3b or polyanions and thereby diminish the ability of fH to regulate complement. To test this we compared a recombinant protein encompassing CCP 19-20 with sixteen mutants. The mutations had only very limited and localized effects on protein structure. While we found four aHUS-linked fH mutations that decreased binding to C3b and/or to heparin (a model compound for cell-surface polyanionic carbohydrates), we identified five aHUS-associated mutants with increased affinity for either or both ligands. Strikingly, these variable affinities for the individual ligands did not correlate with the extent to which all the aHUS-associated mutants were found to be impaired in a more physiological assay that measured their ability to inhibit cell surface complement functions of full-length fH. Taken together, our data suggest that disruption of a complex fH-self surface recognition process, involving a balance of affinities for protein and physiological carbohydrate ligands, predisposes to aHUS

    Rationale and Design for a GRADE Substudy of Continuous Glucose Monitoring

    No full text
    corecore