421 research outputs found

    Challenges and New Approaches to Proving the Existence of Muscle Synergies of Neural Origin

    Get PDF
    Muscle coordination studies repeatedly show low-dimensionality of muscle activations for a wide variety of motor tasks. The basis vectors of this low-dimensional subspace, termed muscle synergies, are hypothesized to reflect neurally-established functional muscle groupings that simplify body control. However, the muscle synergy hypothesis has been notoriously difficult to prove or falsify. We use cadaveric experiments and computational models to perform a crucial thought experiment and develop an alternative explanation of how muscle synergies could be observed without the nervous system having controlled muscles in groups. We first show that the biomechanics of the limb constrains musculotendon length changes to a low-dimensional subspace across all possible movement directions. We then show that a modest assumption—that each muscle is independently instructed to resist length change—leads to the result that electromyographic (EMG) synergies will arise without the need to conclude that they are a product of neural coupling among muscles. Finally, we show that there are dimensionality-reducing constraints in the isometric production of force in a variety of directions, but that these constraints are more easily controlled for, suggesting new experimental directions. These counter-examples to current thinking clearly show how experimenters could adequately control for the constraints described here when designing experiments to test for muscle synergies—but, to the best of our knowledge, this has not yet been done

    The Retrograde IFT Machinery of C. elegans Cilia: Two IFT Dynein Complexes?

    Get PDF
    We analyzed the relatively poorly understood IFT-dynein (class DYNC2)-driven retrograde IFT pathway in C. elegans cilia, which yielded results that are surprising in the context of current models of IFT. Assays of C. elegans dynein gene expression and intraflagellar transport (IFT) suggest that conventional IFT-dynein contains essential heavy (CHE-3), light-intermediate (XBX-1), plus three light polypeptide chains that participate in IFT, but no “essential” intermediate chain. IFT assays of XBX-1::YFP suggest that IFT-dynein is transported as cargo to the distal tip of the cilium by kinesin-2 motors, but independent of the IFT-particle/BBSome complexes. Finally, we were surprised to find that the subset of cilia present on the OLQ (outer labial quadrant) neurons assemble independently of conventional “CHE-3” IFT-dynein, implying that there is a second IFT-dynein acting in these cilia. We have found a novel gene encoding a dynein heavy chain, DHC-3, and two light chains, in OLQ neurons, which could constitute an IFT-dynein complex in OLQ neuronal cilia. Our results underscore several surprising features of retrograde IFT that require clarification

    Induction of isoprenyl diphosphate synthases, plant hormones and defense signalling genes correlates with traumatic resin duct formation in Norway spruce (Picea abies)

    Get PDF
    Norway spruce (Picea abies) defends itself against herbivores and pathogens by formation of traumatic resin ducts filled with terpenoid-based oleoresin. An important group of enzymes in terpenoid biosynthesis are the short-chain isoprenyl diphosphate synthases which produce geranyl diphosphate (C10), farnesyl diphosphate (C15), and geranylgeranyl diphosphate (C20) as precursors of monoterpenes, sesquiterpenes, and diterpene resin acids, respectively. After treatment with methyl jasmonate (MJ) we investigated the expression of all isoprenyl diphosphate synthase genes characterized to date from Norway spruce and correlated this with formation of traumatic resin ducts and terpene accumulation. Formation of traumatic resin ducts correlated with higher amounts of monoterpenes, sesquiterpenes and diterpene resin acids and an upregulation of isoprenyl diphosphate synthase genes producing geranyl diphosphate or geranylgeranyl diphosphate. Among defense hormones, jasmonate and jasmonate-isoleucine conjugate accumulated to higher levels in trees with extensive traumatic resin duct formation, whereas salicylate did not. Jasmonate and ethylene are likely to both be involved in formation of traumatic resin ducts based on elevated transcripts of genes encoding lipoxygenase and 1-aminocyclopropane-1-carboxylic acid oxidase associated with resin duct formation. Other genes involved in defense signalling in other systems, mitogen-activated protein kinase3 and nonexpressor of pathogenesis-related gene1, were also associated with traumatic resin duct formation. These responses were detected not only at the site of MJ treatment, but also systemically up to 60 cm above the site of treatment on the trunk

    Advances in Glucocorticoid-Induced Osteoporosis

    Get PDF
    Glucocorticoid-induced osteoporosis (GIOP) is one of the most important side effects of glucocorticoid use, as it leads to an increased risk of fractures. Recently, many published studies have focused on the cellular and molecular mechanisms of bone metabolism, the pathophysiology of GIOP, and the intervention options to prevent GIOP. In this review, recent advances in GIOP are summarized, particularly recent progress in our understanding of the mechanisms of GIOP resulting in improved insight that might result in the development of new treatment options in the near future

    The Acute Satellite Cell Response and Skeletal Muscle Hypertrophy following Resistance Training

    Get PDF
    The extent of skeletal muscle hypertrophy in response to resistance training is highly variable in humans. The main objective of this study was to explain the nature of this variability. More specifically, we focused on the myogenic stem cell population, the satellite cell (SC) as a potential mediator of hypertrophy. Twenty-three males (aged 18–35 yrs) participated in 16 wk of progressive, whole body resistance training, resulting in changes of 7.9±1.6% (range of −1.9–24.7%) and 21.0±4.0% (range of −7.0 to 51.7%) in quadriceps volume and myofibre cross-sectional area (CSA), respectively. The SC response to a single bout of resistance exercise (80% 1RM), analyzed via immunofluorescent staining resulted in an expansion of type II fibre associated SC 72 h following exercise (pre: 11.3±0.9; 72 h: 14.8±1.4 SC/type II fibre; p<0.05). Training resulted in an expansion of the SC pool associated with type I (pre: 10.7±1.1; post: 12.1±1.2 SC/type I fibre; p<0.05) and type II fibres (pre: 11.3±0.9; post: 13.0±1.2 SC/type II fibre; p<0.05). Analysis of individual SC responses revealed a correlation between the relative change in type I associated SC 24 to 72 hours following an acute bout of resistance exercise and the percentage increase in quadriceps lean tissue mass assessed by MRI (r2 = 0.566, p = 0.012) and the relative change in type II associated SC following 16 weeks of resistance training and the percentage increase in quadriceps lean tissue mass assessed by MRI (r2 = 0.493, p = 0.027). Our results suggest that the SC response to resistance exercise is related to the extent of muscular hypertrophy induced by training

    Microbial Activities and Dissolved Organic Matter Dynamics in Oil-Contaminated Surface Seawater from the Deepwater Horizon Oil Spill Site

    Get PDF
    The Deepwater Horizon oil spill triggered a complex cascade of microbial responses that reshaped the dynamics of heterotrophic carbon degradation and the turnover of dissolved organic carbon (DOC) in oil contaminated waters. Our results from 21-day laboratory incubations in rotating glass bottles (roller bottles) demonstrate that microbial dynamics and carbon flux in oil-contaminated surface water sampled near the spill site two weeks after the onset of the blowout were greatly affected by activities of microbes associated with macroscopic oil aggregates. Roller bottles with oil-amended water showed rapid formation of oil aggregates that were similar in size and appearance compared to oil aggregates observed in surface waters near the spill site. Oil aggregates that formed in roller bottles were densely colonized by heterotrophic bacteria, exhibiting high rates of enzymatic activity (lipase hydrolysis) indicative of oil degradation. Ambient waters surrounding aggregates also showed enhanced microbial activities not directly associated with primary oil-degradation (β-glucosidase; peptidase), as well as a twofold increase in DOC. Concurrent changes in fluorescence properties of colored dissolved organic matter (CDOM) suggest an increase in oil-derived, aromatic hydrocarbons in the DOC pool. Thus our data indicate that oil aggregates mediate, by two distinct mechanisms, the transfer of hydrocarbons to the deep sea: a microbially-derived flux of oil-derived DOC from sinking oil aggregates into the ambient water column, and rapid sedimentation of the oil aggregates themselves, serving as vehicles for oily particulate matter as well as oil aggregate-associated microbial communities
    corecore