293 research outputs found

    Comprehensive molecular testing for respiratory pathogens in community-acquired pneumonia

    Get PDF
    Funding: This work was supported by the Chief Scientist Office (grant number ETM/250).Background. The frequent lack of a microbiological diagnosis in community-acquired pneumonia (CAP) impairs pathogen-directed antimicrobial therapy. This study assessed the use of comprehensive multibacterial, multiviral molecular testing, including quantification, in adults hospitalized with CAP. Methods. Clinical and laboratory data were collected for 323 adults with radiologically-confirmed CAP admitted to 2 UK tertiary care hospitals. Sputum (96%) or endotracheal aspirate (4%) specimens were cultured as per routine practice and also tested with fast multiplex real-time polymerase-chain reaction (PCR) assays for 26 respiratory bacteria and viruses. Bacterial loads were also calculated for 8 bacterial pathogens. Appropriate pathogen-directed therapy was retrospectively assessed using national guidelines adapted for local antimicrobial susceptibility patterns. Results. Comprehensive molecular testing of single lower respiratory tract (LRT) specimens achieved pathogen detection in 87% of CAP patients compared with 39% with culture-based methods. Haemophilus influenzae and Streptococcus pneumoniae were the main agents detected, along with a wide variety of typical and atypical pathogens. Viruses were present in 30% of cases; 82% of these were codetections with bacteria. Most (85%) patients had received antimicrobials in the 72 hours before admission. Of these, 78% had a bacterial pathogen detected by PCR but only 32% were culture-positive (P < .0001). Molecular testing had the potential to enable de-escalation in number and/or spectrum of antimicrobials in 77% of patients. Conclusions. Comprehensive molecular testing significantly improves pathogen detection in CAP, particularly in antimicrobial-exposed patients, and requires only a single LRT specimen. It also has the potential to enable early de-escalation from broad-spectrum empirical antimicrobials to pathogen-directed therapy.Publisher PDFPeer reviewe

    Validation of Differentially Expressed Immune Biomarkers in Latent and Active Tuberculosis by Real-Time PCR

    Get PDF
    Tuberculosis (TB) remains a major global threat and diagnosis of active TB ((ATB) both extra-pulmonary (EPTB), pulmonary (PTB)) and latent TB (LTBI) infection remains challenging, particularly in high-burden countries which still rely heavily on conventional methods. Although molecular diagnostic methods are available, e.g., Cepheid GeneXpert, they are not universally available in all high TB burden countries. There is intense focus on immune biomarkers for use in TB diagnosis, which could provide alternative low-cost, rapid diagnostic solutions. In our previous gene expression studies, we identified peripheral blood leukocyte (PBL) mRNA biomarkers in a non-human primate TB aerosol-challenge model. Here, we describe a study to further validate select mRNA biomarkers from this prior study in new cohorts of patients and controls, as a prerequisite for further development. Whole blood mRNA was purified from ATB patients recruited in the UK and India, LTBI and two groups of controls from the UK (i) a low TB incidence region (CNTRLA) and (ii) individuals variably-domiciled in the UK and Asia ((CNTRLB), the latter TB high incidence regions). Seventy-two mRNA biomarker gene targets were analyzed by qPCR using the Roche Lightcycler 480 qPCR platform and data analyzed using GeneSpring™ 14.9 bioinformatics software. Differential expression of fifty-three biomarkers was confirmed between MTB infected, LTBI groups and controls, seventeen of which were significant using analysis of variance (ANOVA): CALCOCO2, CD52, GBP1, GBP2, GBP5, HLA-B, IFIT3, IFITM3, IRF1, LOC400759 (GBP1P1), NCF1C, PF4V1, SAMD9L, S100A11, TAF10, TAPBP, and TRIM25. These were analyzed using receiver operating characteristic (ROC) curve analysis. Single biomarkers and biomarker combinations were further assessed using simple arithmetic algorithms. Minimal combination biomarker panels were delineated for primary diagnosis of ATB (both PTB and EPTB), LTBI and identifying LTBI individuals at high risk of progression which showed good performance characteristics. These were assessed for suitability for progression against the standards for new TB diagnostic tests delineated in the published World Health Organization (WHO) technology product profiles (TPPs)

    Who knows best? A Q methodology study to explore perspectives of professional stakeholders and community participants on health in low-income communities

    Get PDF
    Abstract Background Health inequalities in the UK have proved to be stubborn, and health gaps between best and worst-off are widening. While there is growing understanding of how the main causes of poor health are perceived among different stakeholders, similar insight is lacking regarding what solutions should be prioritised. Furthermore, we do not know the relationship between perceived causes and solutions to health inequalities, whether there is agreement between professional stakeholders and people living in low-income communities or agreement within these groups. Methods Q methodology was used to identify and describe the shared perspectives (‘subjectivities’) that exist on i) why health is worse in low-income communities (‘Causes’) and ii) the ways that health could be improved in these same communities (‘Solutions’). Purposively selected individuals (n = 53) from low-income communities (n = 25) and professional stakeholder groups (n = 28) ranked ordered sets of statements – 34 ‘Causes’ and 39 ‘Solutions’ – onto quasi-normal shaped grids according to their point of view. Factor analysis was used to identify shared points of view. ‘Causes’ and ‘Solutions’ were analysed independently, before examining correlations between perspectives on causes and perspectives on solutions. Results Analysis produced three factor solutions for both the ‘Causes’ and ‘Solutions’. Broadly summarised these accounts for ‘Causes’ are: i) ‘Unfair Society’, ii) ‘Dependent, workless and lazy’, iii) ‘Intergenerational hardships’ and for ‘Solutions’: i) ‘Empower communities’, ii) ‘Paternalism’, iii) ‘Redistribution’. No professionals defined (i.e. had a significant association with one factor only) the ‘Causes’ factor ‘Dependent, workless and lazy’ and the ‘Solutions’ factor ‘Paternalism’. No community participants defined the ‘Solutions’ factor ‘Redistribution’. The direction of correlations between the two sets of factor solutions – ‘Causes’ and ‘Solutions’ – appear to be intuitive, given the accounts identified. Conclusions Despite the plurality of views there was broad agreement across accounts about issues relating to money. This is important as it points a way forward for tackling health inequalities, highlighting areas for policy and future research to focus on

    Mind your step: the effects of mobile phone use on gaze behavior in stair climbing

    Get PDF
    Stair walking is a hazardous activity and a common cause of fatal and non-fatal falls. Previous studies have assessed the role of eye movements in stair walking by asking people to repeatedly go up and down stairs in quiet and controlled conditions, while the role of peripheral vision was examined by giving participants specific fixation instructions or working memory tasks. We here extend this research to stair walking in a natural environment with other people present on the stairs and a now common secondary task: Using one's mobile phone. Results show that using the mobile phone strongly draws one's attention away from the stairs, but that the distribution of gaze locations away from the phone is little influenced by using one's phone. Phone use also increased the time needed to walk the stairs, but handrail use remained low. These results indicate that limited foveal vision suffices for adequate stair walking in normal environments, but that mobile phone use has a strong influence on attention, which may pose problems when unexpected obstacles are encountered

    Multiple molecular mechanisms form a positive feedback loop driving amyloid β42 peptide-induced neurotoxicity via activation of the TRPM2 channel in hippocampal neurons

    Get PDF
    Emerging evidence supports an important role for the ROS-sensitive TRPM2 channel in mediating age-related cognitive impairment in Alzheimer’s disease (AD), particularly neurotoxicity resulting from generation of excessive neurotoxic Aβ peptides. Here we examined the elusive mechanisms by which Aβ₄₂ activates the TRPM2 channel to induce neurotoxicity in mouse hippocampal neurons. Aβ₄₂-induced neurotoxicity was ablated by genetic knockout (TRPM2-KO) and attenuated by inhibition of the TRPM2 channel activity or activation through PARP-1. Aβ₄₂-induced neurotoxicity was also inhibited by treatment with TPEN used as a Zn²⁺-specific chelator. Cell imaging revealed that Aβ₄₂-induced lysosomal dysfunction, cytosolic Zn²⁺ increase, mitochondrial Zn²⁺ accumulation, loss of mitochondrial function, and mitochondrial generation of ROS. These effects were suppressed by TRPM2-KO, inhibition of TRPM2 or PARP-1, or treatment with TPEN. Bafilomycin-induced lysosomal dysfunction also resulted in TRPM2-dependent cytosolic Zn²⁺ increase, mitochondrial Zn²⁺ accumulation, and mitochondrial generation of ROS, supporting that lysosomal dysfunction and accompanying Zn²⁺ release trigger mitochondrial Zn²⁺ accumulation and generation of ROS. Aβ₄₂-induced effects on lysosomal and mitochondrial functions besides neurotoxicity were also suppressed by inhibition of PKC and NOX. Furthermore, Aβ₄₂-induced neurotoxicity was prevented by inhibition of MEK/ERK. Therefore, our study reveals multiple molecular mechanisms, including PKC/NOX-mediated generation of ROS, activation of MEK/ERK and PARP-1, lysosomal dysfunction and Zn²⁺ release, mitochondrial Zn²⁺ accumulation, loss of mitochondrial function, and mitochondrial generation of ROS, are critically engaged in forming a positive feedback loop that drives Aβ₄₂-induced activation of the TRPM2 channel and neurotoxicity in hippocampal neurons. These findings shed novel and mechanistic insights into AD pathogenesis

    Pregnant women's use of e-cigarettes in the UK: a cross-sectional survey.

    Get PDF
    OBJECTIVE: To estimate prevalence of vaping in pregnancy. Compare characteristics and attitudes between exclusive smokers and vapers, and between exclusive vapers and dual users (smoke and vape). DESIGN: Cross-sectional survey SETTING: Hospitals across England and Scotland POPULATION: Pregnant women attending antenatal clinics in 2017 METHODS: Women 8-24 weeks gestation completed screening questions about their smoking and vaping. Current or recent ex-smokers and/or vapers completed a full detailed survey about vaping and smoking. Main outcome measures The prevalence of vaping, characteristics and attitudes of women who vape and/or smoke. RESULTS: Of 3360 pregnant women who completed screening questions, 515 (15.3%, 95% CI 14.1-16.6) were exclusive smokers, 44 (1.3%, 95% CI 1.0-1.8) exclusive vapers and 118 (3.5%, 95% CI 2.9-4.2) dual users. In total 867 (25.8%) women completed the full survey; compared with smokers (n=434), vapers (n=140) were more likely to hold higher educational qualifications (OR 1.51, 95% CI 1.01-2.25). Compared with exclusive vapers (n=33), dual users (n=107) were younger (OR 0.91 95% CI 0.85-0.98) and less likely to hold high qualifications (OR 0.43, 95% CI 0.20-0.96). Compared with smokers, dual users were more likely to be planning to quit smoking (OR 2.27, 95% CI 1.24-4.18). Compared with smokers, vapers were more likely to think vaping was safer than smoking (78.6% v 36.4%). CONCLUSIONS: One in twenty pregnant women report vaping, most also smoke. Dual users are more motivated towards stopping smoking than smokers. Where women have tried, but cannot stop smoking, clinicians could encourage them to consider vaping for smoking cessation

    ReishiMax, mushroom based dietary supplement, inhibits adipocyte differentiation, stimulates glucose uptake and activates AMPK

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Obesity is a health hazard which is closely associated with various complications including insulin resistance, hypertension, dyslipidemia, atherosclerosis, type 2 diabetes and cancer. In spite of numerous preclinical and clinical interventions, the prevalence of obesity and its related disorders are on the rise demanding an urgent need for exploring novel therapeutic agents that can regulate adipogenesis. In the present study, we evaluated whether a dietary supplement ReishiMax (RM), containing triterpenes and polysaccharides extracted from medicinal mushroom <it>Ganoderma lucidum</it>, affects adipocyte differentiation and glucose uptake in 3T3-L1 cells.</p> <p>Methods</p> <p>3T3-L1 pre-adipocytes were differentiated into adipocytes and treated with RM (0-300 μg/ml). Adipocyte differentiation/lipid uptake was evaluated by oil red O staining and triglyceride and glycerol concentrations were determined. Gene expression was evaluated by semi-quantitative RT-PCR and Western blot analysis. Glucose uptake was determined with [<sup>3</sup>H]-glucose.</p> <p>Results</p> <p>RM inhibited adipocyte differentiation through the suppresion of expression of adipogenic transcription factors peroxisome proliferator-activated receptor-γ (PPAR-γ), sterol regulatory element binding element protein-1c (SREBP-1c) and CCAAT/enhancer binding protein-α (C/EBP-α). RM also suppressed expression of enzymes and proteins responsible for lipid synthesis, transport and storage: fatty acid synthase (FAS), acyl-CoA synthetase-1 (ACS1), fatty acid binding protein-4 (FABP4), fatty acid transport protein-1 (FATP1) and perilipin. RM induced AMP-activated protein kinase (AMPK) and increased glucose uptake by adipocytes.</p> <p>Conclusion</p> <p>Our study suggests that RM can control adipocyte differentiation and glucose uptake. The health benefits of ReishiMax warrant further clinical studies.</p
    corecore