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Abstract The need to balance computational speed and simulation accuracy is a key chal-9

lenge in designing atmospheric dispersion models that can be used in scenarios where near10

real-time hazard predictions are needed. This challenge is aggravated in cities, where mod-11

els need to have some degree of building-awareness, alongside the ability to capture effects12

of dominant urban flow processes. We use a combination of high-resolution large-eddy sim-13

ulation (LES) and wind-tunnel data of flow and dispersion in an idealised, equal-height14

urban canopy to highlight important dispersion processes and evaluate how these are repro-15

duced by representatives of the most prevalent modelling approaches: (i) a Gaussian plume16

model, (ii) a Lagrangian stochastic model and (iii) street-network dispersion models. Con-17

centration data from the LES, validated against the wind-tunnel data, were averaged over18

the volumes of streets in order to provide a high-fidelity reference suitable for evaluating19

the different models on the same footing. For the particular combination of forcing wind20
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direction and source location studied here, the strongest deviations from the LES reference21

were associated with mean over-predictions of concentrations by approximately a factor of22

2 and with a relative scatter larger than a factor of 4 of the mean, corresponding to cases23

where the mean plume centreline also deviated significantly from the LES. This was linked24

to low accuracy of the underlying flow models/parameters that resulted in a misrepresenta-25

tion of pollutant channelling along streets and of the uneven plume branching observed in26

intersections. The agreement of model predictions with the LES (which explicitly resolves27

the turbulent flow and dispersion processes) greatly improved by increasing the accuracy28

of building-induced modifications of the driving flow field. When provided with a limited29

set of representative velocity parameters, the comparatively simple street-network models30

performed equally well or better compared to the Lagrangian model run on full 3D wind31

fields. The study showed that street-network models capture the dominant building-induced32

dispersion processes in the canopy layer through parametrisations of horizontal advection33

and vertical exchange processes at scales of practical interest. At the same time, computa-34

tional costs and computing times associated with the network approach are ideally suited35

for emergency-response applications.36

Keywords Pollutant dispersion · Urban environment · Street-network model · Gaussian37

plume model · Lagrangian stochastic model ·Model inter-comparison38

1 Introduction39

In the event of hazardous materials being released into the atmosphere, either by accident40

or intentionally, dispersion models are key to coordinate actions to avoid or mitigate im-41

pacts on human health [11,31,63]. Emergency response dispersion models are applied both42

proactively, e.g. to assess exposure risks and vulnerability of sensitive public structures, and43

reactively as part of emergency management protocols and decision making frameworks44

[34]. Principal areas of application can be grouped into (i) planning (pre-incident), (ii) re-45

sponse (mid-incident) and (iii) analysis/evaluation (post-incident).46

In general, an emergency response dispersion model needs to have short latency times47

to enable timely actions (fast), it should make low demands on computational resources re-48

quired, be easy to use and fast to set up (cheap) and the results produced should be accurate49

and interpretable in an unambiguous way. Figure 1 illustrates these requirements in terms50

of a ‘feasibility triangle’. The dilemma faced in emergency response modelling is that once51

two of these requirements are met, fulfilling the remaining third becomes a challenge. For52

example, in order to make accurate calculations quickly, computational requirements and53

costs are high; fast and cheap models have accuracy limitations; accurate and computation-54

ally expensive models require long run times. Hence, as long as computational resources55

remain limited, model developers are tasked with finding an optimal balance between these56

requirements.57

1.1 Challenges in urban areas58

High population density and limited evacuation options increase human exposure risks in59

cities, making them particularly vulnerable to hazards from air-borne contaminants. Quality60

requirements on urban dispersion models hence are high. The challenge to balance speed61

and accuracy is exacerbated since urban dispersion models need to have some degree of62

building-awareness, alongside the ability to capture complex effects of urban flow patterns63
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Fig. 1: ‘Feasibility triangle’ for emergency response dispersion modelling.

on the dispersion process [18,5]. Numerous field, laboratory and numerical experiments64

of the past have shown that the impact of buildings on pollutant dispersion is significant,65

particularly in the near-field close to the source [27,14,50,82,79]. Due to building-induced66

flow effects like channelling, branching in intersections, wake recirculation or vortex shed-67

ding at roof and building corners, plume dispersion within the urban canopy layer (UCL)68

is distinctively different from dispersion well above the roughness sublayer. Building ar-69

rangements and street layouts uniquely determine this so-called topological component of70

urban dispersion. Material can travel significant distances upstream of the source if trapped71

in recirculating wind regimes [82]. Localised trapping of pollutants in building wakes can72

create secondary sources whose emission characteristics are governed by local flow proper-73

ties and can vastly differ from those of the primary source [5]. In addition, strong variations74

in building heights can result in significant asymmetries of the vertical plume structure with75

material being lifted out of the canopy layer, resulting in a shift of the effective source height76

[44,45,15].77

Computational fluid dynamics (CFD) approaches like Reynolds-Averaged Navier-Stokes78

(RANS) modelling or large-eddy simulation (LES), and to a lesser extent wind-tunnel ex-79

periments, can deliver detailed information about flow and dispersion processes in built80

environments [79]. While CFD models can be specifically designed for emergency response81

planning and preparation [44,30], associated computing times currently are too long for82

operational use during emergency events [80].83

Instead, simpler model formulations are needed that represent processes relevant for the84

scenario through suitable parametrisations and ideally can also be operated in inverse mode85

for source detection. Approaches for fast urban dispersion modelling are discussed below.86

For an overview of urban dispersion models see e.g. Andronopoulos et al. [2].87

1.2 Options for fast urban dispersion modelling88

Urban emergency response models are primarily applied to the dispersion of air-borne sub-89

stances from localised releases from a limited number of sources. Typical time scales of90

interest range from seconds to a few hours and length scales from streets to city extents.91

Models currently used for fast dispersion simulations differ significantly in the way they92
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Table 1: Characteristics of different modelling approaches for dispersion from localised re-
leases in cities.

Type Dispersion Flow Buildings

CFD Eulerian or internally computed mean explicit
particle tracking or turbulent velocities

Gaussian analytical, mean plume advection implicit
empirical velocity (prescribed or modelled)

Lagrangian particle tracking externally computed mean flow, explicit / implicit
turbulent variances,
Lagrangian time scales

Street-network flux balance mean horizontal street topology
advection velocities,
vertical exchange
velocities (prescribed or modelled)

Hybrid nomographs externally computed flow statistics explicit / implicit

represent the built environment and account for urban flow and dispersion processes, as93

summarised in Tab. 1.94

Here, the comparatively expensive flow-resolving and building-representing CFD solu-95

tions are included as a reference. At the other end of the complexity spectrum we find the96

widespread class of Gaussian dispersion models. Gaussian plume models are based on an97

empirical-analytical representation of the downwind concentration spread, with the plume98

shape being determined through empirically defined concentration standard deviations in99

lateral and vertical direction. In its simplest configuration, this model needs as input only an100

estimate of the mean velocity along the plume trajectory Up. Gaussian plume models have101

been extensively tested and advanced model versions include parametrisations of effects102

of atmospheric stratification, complex terrain or built environments. The US EPA’s model103

AERMOD [25] takes into account urban effects through enhanced turbulence levels relative104

to rural areas and includes a module (PRIME) that accounts for plume downwash in the105

wake of single buildings. The UK’s ADMS model [22] in its urban version ADMS–urban106

[51] uses the Operational Street Pollution Model (OSPM) [46,8] to model street canyon107

effects. Flow and dispersion effects around isolated buildings are modelled in the ADMS–108

BUILD module [58].109

With Gaussian puff models short-duration, non-steady-state releases are modelled by110

tracking the path of individual pollutant clouds in the flow (in a Lagrangian sense). Within111

the Urban Dispersion Model (UDM) [16] bulk effects of single buildings, building clus-112

ters, or entire cities on puff trajectories are parametrised. This distinguishes UDM from113

Lagrangian Gaussian puff models like RIMPUFF [77], SCIPUFF [75,1] or CALPUFF [62],114

which are used on the regional/meso-scale and treat cities in a bulk way as an urban rough-115

ness. All of these models are integral components of several national and multi-national116

emergency response support systems.117

Lagrangian stochastic dispersion models compute trajectories of computational parti-118

cles in 3D wind fields using random-walk methods to represent the stochastic component119

of the dispersion process. Compared to typical Gaussian or building-resolving CFD models,120

Lagrangian models can be applied to problems ranging from local to global scales. Usually,121

Lagrangian models are run off-line on wind fields supplied by diagnostic or prognostic mod-122

els, e.g. numerical weather prediction models for applications from regional to global scales123
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and CFD or diagnostic wind models for urban-scale problems. Well-known representatives124

of off-line Lagrangian models used operationally across scales are the UK Met Office’s125

NAME model [49] or NOAA’s HYSPLIT model [74]. Examples of Lagrangian random-126

walk dispersion models applied in built environments are LANL’s QUIC–PLUME model127

[81] and Micro-Swift–Spray (MSS) [78]. In both QUIC–PLUME and MSS flow informa-128

tion is provided by built-in wind models based on empirical-diagnostic representations of129

building-induced flow effects.130

Street-network models are a comparatively recent addition to the family of urban dis-131

persion models, first brought forward by Soulhac [67]. Here, urban areas are represented132

through a network of connected boxes, covering street canyons and intersections, and canopy-133

layer dispersion is simulated by parametrising concentration fluxes between these boxes134

[38,6]. While not representing buildings explicitly, the model is directly aware of the street135

topology of the city. Like Gaussian dispersion models, street-network models require only136

few flow specifications, which can be either imported from an external flow simulation or137

obtained through suitable parametrisations. The only street-network models currently used138

operationally are the SIRANE [71,72] model and its unsteady version SIRANERISK [69],139

which both contain built-in flow parametrisations.140

A further approach was introduced by the US Naval Research Laboratory with the hy-141

brid plume dispersion model CT-Analyst [11]. This model produces real-time urban con-142

centration predictions by interrogating databases containing possible contaminant pathways143

for the release scenario [10]. These pathways have to be calculated in advance from detailed144

3D flow simulations with building-resolving LES for different ambient wind directions and145

atmospheric conditions.146

1.3 Aims of this study147

In this study we aim to document strengths and limitations of prevalent dispersion mod-148

elling approaches with regard to the physical processes they capture. We choose the canon-149

ical test case of a localised release in an array of cuboidal buildings with oblique wind150

forcing. The models considered here are: (1) a baseline Gaussian plume dispersion model,151

(2) a Lagrangian stochastic plume model driven by 3D wind fields from models of varying152

complexity, and (3) two street-network dispersion models. While in some cases well-known153

representatives of these categories are used, the chief aim of this study is to highlight dif-154

ferences in modelling frameworks rather than ranking particular models. The fact that these155

approaches represent urban dispersion processes through vastly different modelling helps to156

identify which of these processes are of importance. By including the comparatively new157

street-network modelling approach as an alternative to traditional approaches and putting158

the focus on near-field dispersion patterns, this study adds further insight to previous model159

inter-comparison studies [57,56,60,41,3,4].160

Furthermore we aim (i) to assess where in the hierarchy of fast dispersion modelling161

approaches the street-network model is situated by assessing its performance against more162

established methods, (ii) to investigate the effect of the accuracy and level of detail of the163

flow representation in the different types of models, and hence (iii) to gain insight into164

how existing parametrisations in such models could be improved. The dispersion character-165

istics are analysed based on datasets from boundary-layer wind-tunnel measurements and166

high-resolution large-eddy simulation of plume dispersion in an idealised urban environ-167

ment comprised of a regular uniform array of cuboidal buildings. The performance of the168

LES has previously been validated successfully regarding its representation of flow and169
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dispersion processes for this geometry based on the wind-tunnel experiments [23,32]. We170

extend this evaluation with a focus on particular aspects of the dispersion characteristics and171

then use the LES as a reference to establish differences between the output from the sim-172

pler models, averaged over the volumes of streets to reflect a common representation that173

matches the output from street-network models.174

This work is part of the DIPLOS project (DIsPersion of LOcalised releases in Street net-175

works; www.diplos.org) that aimed to improve parametrisations of dispersion processes176

in cities through a better understanding of time-dependent canopy-layer flow processes. De-177

tails about the test case and the reference data are presented in Sect. 2, followed by a brief178

introduction of the dispersion models used (Sect. 3). Flow and dispersion characteristics179

are discussed in Sect. 4, followed by an overview of the model inter-comparison study in180

Sect. 5. Conclusions are presented in Sect. 6.181

2 Reference experiment and simulation182

2.1 Urban test geometry183

Given the interest in hazard modelling in populous areas, we are particularly interested in a184

geometric regime characteristic of city centres, and more specifically of European cities. To185

a fair degree of realism, such urban environments may be approximated by large rectangular186

blocks sufficiently close together as to produce a measure of decoupling between canopy-187

layer flow and the external boundary layer. This means that street-canyon flow is fully de-188

veloped and the city centre may be viewed as a network of streets joined at intersections [6].189

With this in mind, the DIPLOS test geometry was designed as an array of aligned rectangu-190

lar buildings of uniform height H and street width W = H (Fig. 2a), corresponding to the191

so-called skimming-flow regime. Each building has a dimension of 1H× 2H× 1H in x, y192

and z. In contrast to canonical cube-array settings, the rectangular buildings of the DIPLOS193

array introduce a geometrical asymmetry that is more typical of actual street topologies.194

A similar set-up is that of the well-studied MUST field-experiment configuration consist-195

ing of an aligned array of shipping containers [9]. However, with a canyon aspect ratio196

of H/W = 1 the DIPLOS array produces more pronounced street-canyon flow behaviour197

typical for skimming-flow regimes compared to the rather ‘open’ MUST geometry with198

H/W ' 0.2 [61]. The plan area density, defined as the ratio of the area covered by buildings199

to the total area, has a value of λp = 0.33 irrespective of model orientation. The frontal area200

density (ratio between the silhouette area of the buildings to the total plan area) is λ f = 0.35201

for a model orientation of −45◦ that is investigated in this study.202

2.2 Reference data203

2.2.1 Wind-tunnel experiment204

Flow and dispersion experiments under neutral stratification conditions were conducted in205

the Enflo laboratory at the University of Surrey. The open-return boundary-layer wind-206

tunnel used in this study has a 20 m test section and a cross section of 3.5 m × 1.5 m.207

The urban scale-model consisted of a regular array of 14× 21 rows of wooden blocks of208

height H = 70 mm. The model was mounted on a turntable whose centre was located about209

14 m downstream of the test-section entrance. In this study we focus on a model orientation210
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of −45◦ to the approaching boundary-layer flow; i.e. none of the streets are aligned with211

the inflow direction. As can be seen in Fig. 2a, in this set-up the corners of the model array212

were slightly curtailed in order to fit the array into the tunnel. In the flow development sec-213

tion upstream of the model, a fully-rough boundary-layer flow was modelled by the use of214

1.26 m tall vorticity generators (Irwin spires) placed at the tunnel entrance and a staggered215

array of roughness elements covering the tunnel floor, resulting in a boundary-layer depth216

of about 14H. Measurements within the model took place sufficiently far away from the217

leading edge of the model where the mean flow in any repeating unit as shown in Fig. 2b218

was verified to be independent of the location within the centre of the array. The tunnel free-219

stream velocity of Ue = 2 m s−1 was constantly monitored downwind of the model by two220

reference ultrasonic anemometers positioned at a height of approximately 14.5H. Castro et221

al. [23] estimate the friction velocity above the array to be u∗/Ue = 0.0891, i.e. 0.178 m s−1.222

The roughness length, z0, was determined by a fit of the data to the logarithmic wind profile223

using a von Kármán constant of κ = 0.39 and a zero-plane displacement height derived from224

the LES (detail provided in Sect. 2.2.2). This resulted in a value of z0/H = 0.039.225

Plume dispersion from a ground source was realised through the continuous release of226

a passive trace gas, for which a sufficiently diluted propane-air mixture was used to elimi-227

nate buoyancy effects. The source had an internal diameter of 20 mm (i.e. approx. 0.29H)228

and was located in the middle of one of the long streets close to the centre of the model229

(Fig. 2c). The relatively large source diameter in combination with a very low flow rate230

of Q = 1.4 l min−1 minimised momentum effects associated with the release through the231

source area and tests showed that residual effects are only non-negligible very close to the232

release location.233

Point-wise concentration time-series were recorded using a Cambustion fast flame ion-234

isation detector (FFID), capable of measuring hydrocarbon concentration fluctuations at a235

frequency of 200 Hz. Velocity measurements were conducted with a two-component Dantec236

LDA system with a focal length of 160 mm providing a measuring volume with a diameter of237

0.074 mm and a length of 1.57 mm. The flow was seeded with micron-sized sugar particles238

at a sufficient level to attain flow sampling rates around 100 Hz. All data were acquired over239

a measurement duration of 2.5 min. The measurement sites analysed in this study are shown240

in Fig. 2c. Horizontal transects for the mapping of the plume footprint were conducted at241

nominal heights of z/H = 0.5 and 1.5, measuring concentrations and horizontal flow com-242

ponents. As discussed by Castro et al. [23], positional errors of the probes in the horizontal243

plane relative to the height of the buildings were corrected for in a post-processing step.244

In the data analysed here, the height range for individual measurement points was 0.44H245

to 0.54H and 1.44H to 1.54H, respectively. Further uncertainties have to be expected with246

regard to the accuracy of the turntable orientation. Particularly for cases where the array is247

aligned with the approach flow, slight offsets can lead to strong differences in dispersion248

features as discussed by Fuka et al. [32]. Vertical profiles of paired velocity (all compo-249

nents) and concentration signals are available over a height range of z/H = 0.29 to 5. Scalar250

fluxes were measured using a laser Doppler anemometer (LDA), acquiring velocity signals,251

together with the concentrations signals measured by the FFID. For the vertical turbulent252

concentration fluxes, c′w′, analysed here the FFID probe had a constant positional offset to253

the LDA measuring volume of +2 mm in x direction (3 % of H) and −5 mm in y direction254

(7 % of H). The implications of these spatial offsets obviously depend on local velocity and255

concentration gradients and will be discussed in the analysis of the data. Details of the flux-256

measurement set-up and associated uncertainties are described by Carpentieri et al. [19,20]257

for similar experiments conducted in another city geometry.258
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(a)

(b) (c)

Fig. 2: (a) Upstream view of the DIPLOS array mounted in the Enflo wind tunnel for a model
orientation of −45◦. Floor roughness elements and vorticity generators used to produce a
thick approach-flow boundary-layer can be seen upstream of the array. (b) Plan-view of the
repeating unit of the array, including the 1H× 2H building (grey shading), long and short
streets and an intersection. (c) Plan-view of a cut-out of the DIPLOS wind-tunnel array.
The ground source is located at x/H = y/H = 0 (star symbol). Wind-tunnel measurement
locations (triangles: horizontal profiles; crosses: vertical profiles) and the horizontal extent
of the 24H×24H LES computational domain (dashed square) are indicated. In (b) and (c)
a coordinate system aligned with the streets is used (short streets along x direction; long
streets along y direction).
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2.2.2 Large-eddy simulation259

LES of flow and scalar dispersion was carried out at the University of Southampton using260

the open-source CFD package OpenFOAM (v2.1) and a mixed time-scale eddy-viscosity261

subgrid model [47]. The DIPLOS test case was simulated in a computational domain of size262

24H×24H×12H using a uniform Cartesian grid with a resolution of ∆ = H/16.263

As in the wind-tunnel experiment, passive, non-buoyant scalars were released contin-264

uously from a localised ground-source. The quasi-circular area source comprised 12 grid265

cells resulting in an effective source diameter of 0.244H, which is comparable to the ex-266

perimental set-up. No-slip conditions were imposed on all solid surfaces. With a stress-free267

boundary condition at the top of the domain and periodic boundary conditions in horizontal268

directions, the case was effectively realised as a planar channel flow. For the concentration269

fields, sponge layers were implemented at the outlet boundaries to prevent material from270

re-entering the domain through the inlet boundaries as part of the flow recycling process.271

Flow and concentration statistics were obtained over averaging periods of 1000 T , where272

T = H/u∗ is the eddy-turnover time and u∗ is the friction velocity. The flow simulation was273

started from an initial field of resolution ∆ = H/16, which was interpolated from a fully-274

developed precursor simulation of reduced resolution (∆ = H/8). A spin-up time of 100 T275

was allowed before starting the pollutant release. Concentration statistics were computed by276

ensemble-averaging the time-averaged statistics derived from four independent realisations277

of the dispersion scenario.278

As documented by Castro et al. [23] and Fuka et al. [32], for the same computational279

set-up the flow and dispersion simulations in a smaller domain (12H × 12H × 12H) were280

successfully validated against wind-tunnel measurements and data from direct numerical281

simulations (DNS) based on mean flow and turbulence statistics. Detailed descriptions of the282

flow simulations and the numerical techniques involved can be found in these publications.283

The friction velocity derived from the LES for the test case presented here (larger domain of284

24H×24H×12H) had a value of u∗ = 0.305 m s−1. This results in relations of u∗/U2H =285

0.131 and u∗/Ue = 0.0828, where U2H = 2.34 m s−1 is the horizontal velocity magnitude286

at twice the building height and Ue = 3.69 m s−1 the free-stream velocity at z/H = 12.287

The roughness length z0/H = 0.076 was determined from a fit of the logarithmic wind288

profile with a von Kármán constant of κ = 0.39 and using a zero-plane displacement height289

d/H = 0.58 that was computed before from the pressure and shear stress distributions on290

the walls using Jackson’s [48] approach (see Castro et al. [23] for details). For the purpose291

of non-dimensionalising the results from the LES, we use H = 1 m.292

3 Dispersion models293

The dispersion modelling approaches and set-ups of the specific models used in this study294

are described below. A summary is presented in Tab. 2. In all formulations below and in295

Sect. 4 and 5, a Cartesian coordinate system is used that is aligned with the streets of the DIP-296

LOS array (see Fig. 2c), where x, y, z denote lateral and vertical directions. Time-averaged297

variables are written in upper case letters, i.e. c = C + c′, where C = c is the time mean,298

c′ the fluctuation about the mean and c the instantaneous value. Volume-averaged quanti-299

ties are indicated by square brackets, [C]; spatial averages over 2D facets/areas by angled300

brackets, 〈C〉.301
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3.1 Gaussian plume model302

We use the Gaussian plume model formulation introduced by Hanna et al. [42] as a baseline303

urban dispersion model. Previous evaluations of this model against two field experiments304

showed a satisfactory performance in high-density, high-rise urban environments, for which305

a priori information on the initial lateral and vertical plume spread were provided to the306

model [39]. While there are certainly more sophisticated (operational) Gaussian dispersion307

models available (see Sect. 1.2), they share the same underlying modelling framework with308

Hanna et al.’s baseline model, which will therefore be the subject of interest in our model309

inter-comparison.310

In the model formulation used on this study, the spatial distribution of the mean scalar311

concentration C originating from a continuous point-source release is given by the classic312

Gaussian plume equation with ground reflection at z = 0 m313

C(x,y,z) =
Q

2πUpσyσz
exp

(
− y2

2σ2
y

)

×
[

exp
(
− (z−hQ)

2

2σ2
z

)
+ exp

(
− (z+hQ)

2

2σ2
z

)]
, (1)

where Up is a representative UCL wind speed, Q is the constant mass emission rate and hQ314

the release height (hQ = 0 m in this study). The dispersion coefficients, σy and σz, are given315

by the classic Briggs [12] parametrisations for urban areas, including a modification of the316

lateral plume spread parameter, σy, for light-wind situations proposed by Hanna et al. [42]:317

σy = σy0 +max(0.16,(A/Up))x/(1.0+0.0004x)−
1
2 , (2)

σz = σz0 +0.14x/(1.0+0.0003x)−
1
2 , (3)

where A = 0.25 m s−1. Hence, the modification in Eq. (2) comes into play when Up is less318

than about 1.6 m s−1. The initial plume spread is set to σy0 = σz0 = H/3, which is lower319

than the value of H/2 proposed by Hanna et al., but leads to more realistic results in terms320

of the initial upwind spread for the scenario investigated here, where the source is located321

in a street with strong flow channelling. It has to be noted that such a priori knowledge322

about the flow in the source street is usually not available when running dispersion models323

for emergency-response scenarios. As in the LES the spatial resolution was uniform in all324

direction with a grid spacing of ∆ = H/16.325

The bulk travel speed of the plume within the canopy layer, Up, was approximated by326

spatially averaging the horizontal flow from the LES over a depth of z = 0 m to H, resulting327

in a canopy-layer advection velocity of Uc = 0.67 m s−1. In actual operational dispersion328

modelling the cloud speed cannot usually be derived from such detailed, space-resolved329

information as was the case here. Instead, this quantity has to be approximated through330

parametrisations based on more accessible quantities. We note here that the value of Uc331

stated above is quite close to the value of 0.73 m s−1 determined from the relationship332

Uc = u∗(2/λ f )
1/2 proposed by Bentham and Britter [7] where u∗ is the LES friction velocity.333

Hanna and Britter [43] suggest the relation Uc = 0.45U2H for typical built-up inner-city334

areas with λ f > 0.3 (as in our study), which results in a value of 1.05 m s−1 based on335

U2H = 2.34 m s−1 in the LES (Sect. 2.2.2).336



Evaluation of fast atmospheric dispersion models in a regular street network 11

Table 2: Overview of dispersion model set-ups used in this study.

Name Type Flow

GAUSS–1 Gaussian plume LES mean UCL velocity;
RSL plume deflection

GAUSS–2 Gaussian plume LES mean UCL velocity;
UCL plume deflection

QUIC (URB) Lagrangian stochastic QUIC–URB
(diagnostic model)

QUIC (CFD) Lagrangian stochastic QUIC–CFD
(prognostic model)

QUIC (LES) Lagrangian stochastic 3D LES field
(prognostic model)

UoR–SNM street network LES velocities
SIRANE–1 street network parametrisations
SIRANE–2 street network LES velocities

To add some degree of building-awareness, the average horizontal plume deflection was337

taken into account. Two deflections from the −45◦ forcing direction were considered: (1)338

based on the average horizontal wind direction of −54◦ determined from the LES over a339

depth of 1 ≤ z/H ≤ 2, covering the roughness sublayer (RSL) and (2) based on the LES340

UCL-averaged horizontal wind direction of −78◦. While the former is a quantity that could341

be approximated through measurements in an emergency, e.g. from tower or roof-level mea-342

surements, the latter is usually not easily obtainable from sparse in-situ measurements within343

the canopy layer. Initial tests of the model have shown a high sensitivity of the results to the344

plume-turning parameter in comparison to the plume orientation observed on the LES and345

the wind tunnel.346

3.2 Lagrangian dispersion model347

We use the Quick Urban & Industrial Complex (QUIC) dispersion modelling system (v6.2348

and v6.29) developed by LANL and the University of Utah [53]. The core of the system349

is the Lagrangian model QUIC–PLUME that introduces additional terms to the classic350

Langevin random-walk equations in order to account for urban dispersive effects arising351

from spatial inhomogeneities of UCL turbulence and particle reflections on surfaces. A de-352

tailed description of the model components is presented by Williams et al. [81].353

In this study, QUIC–PLUME is run on 3D wind fields from two system-integrated flow354

models. (i) the building-aware mass-consistent wind solver QUIC–URB that is based on355

the empirical-diagnostic modelling strategy developed by Roeckle [59] and expanded upon356

by Brown et al. [17]. QUIC–URB computes mean wind fields around buildings by using357

empirical relationships to produce backflow in low pressure zones (e.g. street canyons) in358

combination with a mass consistency constraint which results in flow recirculation in the359

regions of interest [55]. (ii) QUIC–CFD that is based on the RANS equations in combina-360

tion with a zeroth-order turbulence model using a mixing-length approach [37]. In order to361

disentangle the performance of the dispersion model from the accuracy of the wind models,362

in the final variant (3), QUIC–PLUME is driven directly by the mean 3D LES reference363

wind field.364

In both QUIC–URB and QUIC–CFD a logarithmic wind profile for neutral stratification365

is prescribed at the inflow edges based on the LES roughness parameters and H was set to366
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16 m. The reference wind speed Ure f was 4 m s−1 in a height of zre f = 4.5H. In agreement367

with the LES, a uniform grid resolution of ∆ = H/16 was used. In order to ensure a fully368

converged wind environment upstream of the source, the DIPLOS array set-up was realised369

in a slightly larger domain of 28H × 27H × 12H. QUIC–URB was run with the recom-370

mended settings [53], including a modified wake-zone model [52]. For QUIC–CFD, model371

parameters like the time step or the maximum allowable mixing length were automatically372

generated by the system based on the specified geometry, cell size and wind speed.373

With ∆x = ∆y = H/8 and ∆z = H/16 the collecting boxes for the particles were slightly374

larger than the flow grid cells in order to reduce the statistical noise of the output. As in the375

LES, computational particles with passive-tracer characteristics were released continuously376

through a circular area ground source with a diameter of 0.244H. In each run, 612,000377

particles were released over a duration of 30 min. The model time step was set to 0.1 s.378

3.3 Street-network dispersion models379

The street-network dispersion modelling approach is based on the balance equation for the380

volume-averaged scalar concentration [C]V within a street or intersection box of volume V381

in the UCL382

d [C]V
dt

+
1
V

K

∑
k=1

Φ
k = [Q]V , (4)

where [Q]V is the volume-source term and Φk is the total scalar flux through the kth facet383

of the box [67,38,6]. The total scalar flux Φk can be partitioned into an advective and384

a turbulent component. The horizontal exchange between street and intersection boxes is385

assumed to be mainly advective and the associated scalar flux is386

Φ
k
adv =CUiAk ≡ [C]V Uk

i Ak , (5)

where Uk
i (i = 1,2) is the horizontal advection velocity aligned with the street, with which387

material is transported through facet k of area Ak. The inherent assumption of this approach388

is that the material is well-mixed within each street or intersection box, i.e. spatial concen-389

tration fluctuations are small compared to the spatial mean.390

On the other hand, the vertical exchange between the UCL and the external flow above391

the buildings is assumed to be mainly turbulent and can be approximated by an exchange392

velocity approach393

Φ
top
turb = c′w′Atop ≡ ([C]V − [C]ext)E Atop , (6)

where E is the vertical turbulent exchange velocity through the top facet of the box that394

has an area of Atop [71]. The direction of exchange is determined by the difference between395

the UCL and external concentrations, [C]V − [C]ext . Figure 3a schematically illustrates the396

flux balance for a street box. Dispersion above the canopy, where the street-network concept397

breaks down, has to be modelled by a different approach, e.g. using a Gaussian plume model.398



Evaluation of fast atmospheric dispersion models in a regular street network 13

(a) (b)

Fig. 3: (a) Flux balance for a street box: Material is transported into the box through facet
1 (Φ1

adv) and out of the box through facet 2 (Φ2
adv). Through the top facet, the box can gain

or lose material through turbulent exchange with the external field (Φ3
turb). (b) Horizontal

advection velocities defined in the UoR street-network model (UoR–SNM). The index ‘s’
denotes flow coming out of a street, the index ‘i’ is for flow coming out of an intersection.

3.3.1 UoR–SNM399

For a general demonstration of the street-network modelling approach, we use the Univer-400

sity of Reading Street-Network Model (UoR–SNM) introduced by [6], where a detailed401

derivation of the model formulation is presented. This model was previously tested against402

DNS dispersion data in a cube-array environment [35,36].403

In contrast to the fully operational street-network model SIRANE, UoR–SNM does not404

include built-in flow parametrisations. Instead, we use a hybrid approach by deriving from405

an external flow simulation the velocity parameters, Uk
i and E, required by the model to406

compute the horizontal and vertical concentration fluxes based on Eqs. (5) and (6). In this407

study, we use the LES data for this purpose. Hence, the main aim of including UoR–SNM408

in the inter-comparison study is to demonstrate the viability of the approach and to highlight409

its strengths and limitations with regard to the representation of dispersion processes.410

Horizontal advection velocities, Uk
i , used in Eq. (5) were obtained from the LES in terms411

of facet-averages of the time-mean velocity components along x and y streets as shown in412

Fig. 3b. In order to account for upwind transport of scalars, a diffusive transport component413

was added in the UCL together with an additional transport term into sheltered regions (here414

into x streets) following Hamlyn et al. [38]. The vertical turbulent exchange velocity used in415

Eq. (6) at the top of the canopy layer (z/H = 1) was derived from the LES according to416

E =
〈c′w′〉z/H=1

[C]ucl− [C]ext
(7)

where [C]ucl are LES concentrations averaged over street and intersection volumes within417

the UCL (0 ≤ z/H ≤ 1) and [C]ext box-averaged concentrations in the external flow over a418

depth of 1 ≤ z/H ≤ 2 [5]. Exchange velocities were computed for x streets (Ex), y streets419

(Ey) and intersections (Ei) individually. Dispersion above the canopy was modelled in UoR–420

SNM by a simple advection-diffusion approach using the same box discretisation as in the421

UCL and mean horizontal transport velocities derived from the LES.422
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3.3.2 SIRANE423

The second street-network model is the fully operational model SIRANE [71–73]. Previous424

validation studies using in-situ field measurements in Lyon [70] and wind-tunnel experi-425

ments in a model of a part of central London [21] documented the suitability of SIRANE426

for fast and reliable urban dispersion simulations.427

Unlike UoR-SNM, SIRANE is equipped with a suite of parametrisations to compute428

all necessary flow parameters and only requires the specification of the external wind speed,429

direction and atmospheric stability. A horizontally homogeneous boundary-layer flow above430

the canopy is modelled using Monin-Obukhov similarity theory, where we specified the431

roughness length, displacement height and friction velocity for the DIPLOS geometry based432

on the LES results (see Sect. 2.2.2). The uniform building height was set to H = 10 m.433

Dispersion in the external flow is computed by a Gaussian plume model [71].434

In SIRANE the vertical exchange velocity is linked to the standard deviation of the435

vertical velocity component, σw, through436

E =
σw√
2π

(8)

and σw is parametrised for different stability ranges via u∗. Another difference between437

UoR–SNM and SIRANE is the treatment of dispersion through intersections. In the former,438

the intersection is assumed to be well-mixed and fluxes out of the intersection into downwind439

streets are parametrised through the advection velocities Ui and Vi (Fig. 3b). In SIRANE,440

mixing in the intersection and the 2D branching of material is determined by the external441

flow using a model for the volume-flux conservation. This approach takes into account the442

local geometry, the external wind direction and the standard deviation of its fluctuations [68,443

71]. Imbalances are overcome by vertical exchange with the external flow.444

We ran SIRANE in two modes: (1) with the default flow parametrisations described445

above; (2) with the LES flow information provided as in the case of UoR–SNM. Since446

SIRANE treats intersections purely as nodal points connecting adjacent streets, only the447

vertical exchange velocities in the x and y streets need to be parametrised together with the448

horizontal advection velocities along each street, Us and Vs. In order to adjust the external449

flow field to the reference conditions, in both cases the average horizontal wind direction in450

the LES over 1≤ z/H ≤ 2 (−54◦) was prescribed as the forcing direction.451

4 Flow and dispersion characteristics452

In the following all flow and concentration quantities are presented in a non-dimensional453

framework. Non-dimensional concentrations, C∗, and concentration fluxes, c′u′i, are com-454

puted as455

C∗ =
CUre f H2

Q
(9)

and456

c′u′i
∗
=

c′u′i H2

Q
, (10)

where Q is the constant mass emission rate and Ure f is the mean streamwise reference ve-457

locity defined in the approach-flow coordinate system in a height of 4.5H.458



Evaluation of fast atmospheric dispersion models in a regular street network 15

4.1 Flow behaviour459

The quality of dispersion predictions to a large degree depends on whether the underlying460

flow as the main physical driver of advection and mixing processes is adequately repre-461

sented. Both SIRANE and the QUIC modelling suite are complete operational systems that462

include means of calculating all necessary flow information in the UCL and the external463

boundary layer that is required by the dispersion modules. In order to understand the con-464

centration output it is therefore crucial to also appraise the adequacy of the flow modelling.465

QUIC–PLUME requires the most detailed flow information in terms of a full 3D repre-466

sentation of the mean flow. Previously, [54] evaluated the performance of QUIC–URB and467

QUIC–CFD against wind data measured during the Joint Urban 2003 field campaign in Ok-468

lahoma City and found that both wind models performed similarly well. When tested in an469

idealised cube-array geometry, which is closer to the DIPLOS set-up regarding the degree470

of geometrical abstraction, [65] found that building-induced flow features in QUIC–URB471

compared well with wind-tunnel data.472

Figure 4 shows wind vectors and vertical mean velocities of the LES and the two QUIC473

wind models for the DIPLOS case. For−45◦ and other model orientations, Castro et al. [23]474

previously validated the LES flow against the wind-tunnel measurements and found that the475

salient features of the complex UCL flow patterns agree as well as can be expected with the476

experiment given the uncertainties described in Sect. 2.2.1.477

The data is shown in a horizontal plane at z/H = 0.5 in terms of an ensemble-average478

over the time-averaged flow in all repeating units of the domain (Fig. 2b). Doubling the479

length of one building side introduced a geometrical asymmetry for which the resulting480

flow patterns deviate strongly from the corresponding cube-array case with its symmetric481

corner vortices and flow convergence in intersections (e.g. Fig. 4 in Coceal et al. [26]).482

The LES shows a fully developed channelling region along the y street through the in-483

tersection, cutting off most of the outflow from the x street, where a strong recirculation484

pattern is established. This is also reflected in the histogram of LES mean horizontal wind485

directions, θ , over the entire UCL (Fig. 5), which reveals a strong peak at −90◦ (flow in486

−y direction) and only a small plateau between 0◦ and 90◦. The intersection shows a highly487

three-dimensional flow structure. Alternating regions of up-drafts and down-drafts in both488

streets indicate recirculation patterns in the vertical plane. In combination with the observed489

along-street channelling this results in a helical recirculation [29] along the y-street canyon,490

which extends well into the intersection. Channelling in the long streets was also observed491

in the MUST geometry at a similar inflow angle [28], but the larger street width resulted492

in weaker flow deflection and also in less well-established flow recirculation in the short493

street. Unlike the LES, the histograms of both QUIC wind models show peaks at the forc-494

ing direction of −45◦ (Fig. 5). In the case of QUIC–CFD, this is mainly due to the flow495

behaviour in the intersections and the flow entering the long streets, which has a stronger496

u-component compared to the LES. The general patterns of updraft regions protruding from497

the leeward building sides well into the intersection and downdraft regions on the wind-498

ward sides are very similar in the LES and QUIC–CFD. In contrast to that, in QUIC–URB499

the helical flow does not extend into the intersection but is confined to the long street. In500

both QUIC flow models, the recirculation zone in the short street is much larger and less501

confined compared to the LES. Here, QUIC–URB shows a strong flow reversal into −x di-502

rection (peak at ±180◦ in Fig. 5) and also predicts a stronger negative u-component in the503

y-street compared to the two prognostic flow simulations (peak at about −110◦). Whereas504

in the LES and QUIC–CFD, the flow pattern in the intersection is determined by the chan-505

nelling in the long street, in QUIC–URB the outflow from the long streets is entering the506
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Fig. 4: Horizontal cross-sections at z/H = 0.5 showing mean horizontal velocity vectors and
vertical velocities of the LES (left), QUIC–URB (centre) and QUIC–CFD (right). The data
represent ensemble averages over all repeating units of the array (see Fig. 2b). The length
of the vectors scales with the mean wind speed Uh =

√
U2 +V 2. Note that only every fourth

vector is shown. Large arrows indicate the forcing wind direction.

upwind short street and the intersection flow largely reflects the recirculating flow pattern.507

These differences are expected to have an influence on the topological dispersion behaviour508

through the street network.509

4.1.1 Horizontal advection velocities510

Mean horizontal advection velocities as defined in Fig. 3b were computed from the LES in511

terms of facet-averaged mean velocities at the four interfaces between street and intersection512

boxes. This resulted in values of 〈Ui〉= 0.22 m s−1 and 〈Vi〉=−0.71 m s−1 for flow out of513

the intersection into the downwind x and y streets, respectively, and 〈Us〉= 0.23 m s−1 and514

〈Vs〉 = −0.77 m s−1 for flow from the streets into the intersections (for Ure f of 3 m s−1 at515

zre f = 4.5H). As a result of the flow channelling along the y streets (Fig. 4), the magnitudes516

of advection velocities along the y-axis, 〈V 〉, exceed those along the x-axis, 〈U〉, by more517

than a factor of 3. Similar ratios are observed in the experiment, with the important caveat518

that here we compare point values measured at the interfaces in heights of z/H = 0.5 and not519

averages over the entire facets from the ground to roof level. Based on the same reference520

velocity as in the LES, from the wind-tunnel flow measurements we obtain: Ui = 0.21 m s−1,521

Vi =−0.51 m s−1, Us = 0.18 m s−1 and Vs =−0.58 m s−1. Note that here we used flow data522

measured on a much denser grid in a small region of the array compared to the relatively523

coarse mapping grid shown in Fig. 2c.524
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Fig. 5: Histograms of horizontal wind directions, θ , in the UCL (0≤ z/H ≤ 1) derived from
LES, QUIC–URB and QUIC–CFD mean flow fields at a forcing wind direction of −45◦.
A wind direction of −90◦ represents flow into negative y direction; 0◦ flow into positive x
direction as indicated in the schematic on the right. The plume directions for the Gaussian
model runs are shown together with the canopy-layer plume direction derived from the bulk
horizontal advection velocities in the Lagrangian and street-network models (see Tab. 3).

Table 3 contrasts these results with the advection velocities modelled in SIRANE–1525

and the equivalents from both QUIC wind models. Unlike the LES, the parametrisation in526

SIRANE–1 produces the same velocity magnitudes for 〈Us〉 and 〈Vs〉. As a result, the dis-527

persion module will be unaware of the strong change in flow direction within the canopy528

layer and resulting pollutant channelling effects. The transport velocity along the short x529

street is significantly over-predicted compared to the LES, yet a much better agreement is530

found for 〈Vs〉 along the longer y streets. Currently the SIRANE velocity model formulation531

does not take into account effects of the street length, but instead assumes a fully developed532

flow as through an ‘infinite’ street. The shorter the street, the less applicable this assumption533

becomes. However, a mere factor–of–2 increase of the y-street lengths compared to the x534

streets in the DIPLOS array already resulted in a good agreement with the LES. The ad-535

vection velocities derived from the QUIC wind models support the previous assessments.536

In QUIC–CFD the channelling in y direction and through large parts of the intersections537

resulted in an exceedance of magnitudes of 〈V 〉 compared to 〈U〉 by about a factor of 1.4,538

which is less than half of the factor in the LES and also much lower compared to the ex-539

periment. For QUIC–URB, on the other hand, there is more than a factor of 6 difference540

between the outflow from the long and the short streets, i.e. twice the factor seen in the LES.541

Here, the low value of 〈Us〉 results from the flow reversal along the facet triggered by the542

recirculation regime; 〈Ui〉 is similarly small as there is less outflow from the intersection into543

the downwind short street compared to the LES and QUIC–CFD. The different flow orien-544

tations based on the advection velocities listed in Tab. 3 are summarised in Fig. 5 together545

with the prescribed values for the two Gaussian model runs.546
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Table 3: Horizontal advection velocities and vertical turbulent exchange velocities derived
from the LES together with modelled parameters from SIRANE–1. Velocity parameters
derived from the LES are used in UoR–SNM and SIRANE–2. Corresponding advection
velocities from both QUIC wind models are included for comparison. All velocities have
units of m s−1 and correspond to a reference velocity Ure f of 3 m s−1 at zre f = 4.5H.

Model 〈Us〉 〈Vs〉 〈Ui〉 〈Vi〉 Ex Ey Ei

LES 0.23 -0.77 0.22 -0.71 0.10 0.15 0.12
SIRANE–1 0.84 -0.84 — — 0.09 0.09 —
QUIC–URB 0.10 -0.63 0.12 -0.68 — — —
QUIC–CFD 0.42 -0.61 0.40 -0.55 — — —

4.2 Dispersion behaviour547

Before discussing the results of the model inter-comparison study in Sect. 5, in the following548

paragraphs some general features of the dispersion scenario are presented based on the LES549

and wind-tunnel data.550

4.2.1 Plume characteristics551

Figure 6 shows the 3D LES plume in terms of a concentration iso-surface at C∗ = 0.01. The552

overall plume shape is strongly non-Gaussian and the material is distributed asymmetrically553

about the forcing wind direction of −45◦. Vertically the plume extends up to approximately554

z/H = 5 in the region covered by the simulation. The plume shape implies that within the555

building array, material is transported along the y direction downwind of the source, where556

there is significant detrainment of material out of the UCL. Above the array pollutant path-557

ways adjust to the forcing wind direction. Differences in concentration distributions within558

and above the UCL are further illustrated in Fig. 7, showing LES mean concentrations in the559

(x,y) plane together with corresponding point-wise wind-tunnel measurements at z/H = 0.5560

and 1.5. The agreement between LES and experiment regarding the shape of the plume561

footprints and the local concentration levels is satisfactory. The extent of the plumes in +x562

direction agrees very well, also with regard to the level of upwind spread of material from563

the source street. Both LES and experiment show strong channelling of the plume down the564

source street, which overall leads to an asymmetric plume footprint. Some differences in565

the plume shapes and concentration levels farther away from the source can be determined.566

Some of these could be attributable to positional uncertainties of the wind-tunnel data in any567

horizontal plane as discussed in Sect. 2.2.1, which can be as large as 0.06H in the vertical.568

However, there seems to be a slight systematic difference in the orientation of the plumes in569

the UCL, which becomes more effective further downwind of the source. Here we note that570

the lowest two rows of measurements (around y/H =−15) were taken only one block away571

from the edge of the model (see Fig. 2a) and there is an increase in uncertainties attached572

to the concentration measured far downwind of the source. For further discussions of the573

general comparison between experiment and LES see Fuka et al. [32].574

The LES plume centreline in the canopy, here defined as the line of maximum concen-575

tration downwind of the source, proceeds along the y axis (x/H = 0) and thus is offset by576

45◦ to the external flow as a result of the flow channelling in the long streets. The near-field577

behaviour of the plume is similar to the MUST case reported by Dejoan et al. [28] for a sim-578

ilar scenario. However, due to the narrower streets in the DIPLOS array, channelling effects579
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Fig. 6: C∗ = 0.01 iso-surface of the LES plume looking into downwind direction. Colour
contours on the plume indicate the height above ground, z/H. The position of the ground
source and the forcing wind direction are indicated (large arrow; dotted line along −45◦).
Dashed lines show the locations of the (x,z) cross sections discussed in Fig. 8.

Fig. 7: Mean concentrations in the horizontal plane at z/H = 0.5 (left) and z/H = 1.5
(right). Contours represent the LES data and circles the point-wise wind-tunnel measure-
ments. Empty circles for the wind tunnel show measurement sites where the C∗ was less
than 10−3 and the experimental data can be subject to large uncertainties. Solid black lines
show the forcing wind direction; dashed black lines indicate the approximated LES plume
direction based on the maximum mean concentration in the horizontal plane. In this and all
following figures, arrows indicate the forcing direction and stars the source location.
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are much stronger and comparable to observations in other idealised street networks [33]580

or realistic urban centres [82]. As the flow above the canopy re-adjusts back to the forcing581

direction, the offset of the plume centreline decreases. This is particularly the case in the582

downwind regions of the plume, where less material is detrained from the canopy (Fig. 7).583

A similar shift can also be seen in the wind-tunnel data.584

4.2.2 Vertical exchange585

The vertical transport of pollutants out of and back into the canopy layer plays a defining586

role in the dispersion scenario investigated here. Concentration distributions and turbulent587

exchange characteristics in the vertical (x,z) plane are shown in Fig. 8 for four fixed y/H po-588

sitions downstream of the source as indicated in Fig. 6. While in the UCL the concentration589

maxima are located at x/H = 0 over the entire y extent of the plume, above the buildings the590

plume is advected into +x direction with the re-adjusting flow. Due to the higher velocities591

here, the material is transported much faster horizontally than in the canopy layer. Already592

at a distance from the source of 4.5H in −y direction, a significant part of the plume is593

located outside of the UCL. The corresponding fields of the vertical turbulent momentum594

flux, c′w′
∗
, show that the detrainment of material out of the UCL is strongest close to the595

source as seen in the slices at y/H =−1.5 and −4.5, while in the far-field of the plume the596

exchange is directed back into the canopy and is strongest in the shear layer just above roof-597

level (y/H = −13.5). The cross section at y/H = −7.5 indicates an intermediate regime.598

This agrees with previous findings by Carpentieri et al. [19] and Goulart et al. [36].599

Following Eq. (7) the vertical exchange velocity is defined at the top of each network-600

model box in the UCL. Figure 9a shows a map of 〈c′w′∗〉z/H=1 as derived from the LES by601

facet-averaging the high-resolution concentration flux output at the top of each street and602

intersection box. In the horizontal plane, distinct regions of detrainment and re-entrainment603

are evident. In the near-field of the source and along the plume centreline at x/H = 0604

on average the vertical turbulent concentration flux is directed out of the canopy layer at605

roof-level (〈w′c′∗〉z/H=1 > 0). Transport of pollutants back into the street system is domi-606

nant away from the plume centreline in lateral +x direction. The regions of re-entrainment607

(〈w′c′∗〉z/H=1 < 0) coincide with regions where [C∗]ucl− [C∗]ext < 0 (not shown), i.e. where608

concentrations are higher in the external layer than in the canopy. This positive vertical con-609

centration gradient is a result of the advection of material above the array that was detrained610

from streets along the plume centreline (see Figs. 6 and 8).611

The spatial extent of the detrainment and re-entrainment regions respectively reflect612

the footprints of the main parts of the plume within and above the canopy. Figure 9a im-613

plies that surface concentrations are not exclusively governed by processes in the street614

network, but in certain circumstances can be controlled, locally, by the dispersion above615

the canopy. This is particularly important at some intermediate distance from the source,616

where tests with UoR–SNM for this case suggest that re-entrainment can increase street-617

level concentrations by a factor greater than 10. In both street-network models, the vertical618

transfer is parametrised assuming a linear relationship between the local turbulent vertical619

scalar flux (facet-averaged) and the vertical concentration gradient (volume-averaged), with620

the exchange velocity E determining the slope. The LES data for this test case supports this621

assumption and we find a strong positive correlation between these quantities. We also find622

that differences between the exchange velocities associated with upward (detrainment) and623

downward (re-entrainment) motions are comparable to variations in exchange efficiency for624

different street types. We note that the two network models used here differ in their treat-625

ment of dispersion above the canopy. In SIRANE above-roof dispersion is implemented as626
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Fig. 8: Vertical (x,z) cross sections of mean scalar concentrations (left) and vertical turbulent
concentration fluxes (right) at four y/H locations downwind of the source as indicated in
Fig. 6. The source is located at x/H = 0.

a series of point sources giving rise to Gaussian plumes that are then superimposed [71]. In627

UoR-SNM mean and turbulent horizontal fluxes are separately parametrised using advection628

velocities and diffusion coefficients in the discretised advection-diffusion equation [36].629

Figure 9b compares height profiles of the LES and wind tunnel vertical concentration630

flux taken in a region of the plume where there is a transition between predominantly upward631

or downward-oriented turbulent transport (sites indicated in Fig. 9a). In both data sets, in632

the x street (P1) and the intersection (P2) scalar fluxes are positive over all heights, while633

in the centre of the y street (P3) the exchange around roof-level and below is negative.634

The quantitative agreement between LES and experiment around roof-level is very good.635

However, there is approximately a factor of two difference in the peak values observed at636

about z/H ' 1.6. Larger differences can also be observed at site P2 below roof-level, where637

the LES and experiment show opposite trends. Several reasons can explain these differences.638

The sites are located in a region of large spatial concentration gradients as can be seen in the639

y/H =−4.5 cross section in Fig. 8, which coincides with sites P1 and P2. The limited (but640

comparable) averaging times in the simulation and the experiment will cause much higher641

levels of uncertainty this close to the source and towards the plume edge, especially in the642

fluxes, where spatial concentration gradients are large and temporal signal intermittency643

is high compared to more well-mixed plume regions. Further uncertainties are introduced644

by the inevitable spatial offset between the LDA and FFID (constant downwind shift) as645

discussed in Sect.2.2.1. Further aspects are the slight difference in the plume orientation646



22 Denise Hertwig et al.

(a)

(b)

Fig. 9: (a) Facet-averaged vertical turbulent concentration flux at z/H = 1. Crosses indicate
the locations of vertical profiles measured in the wind-tunnel experiment. (b) Comparison of
experimental and LES height profiles of the vertical turbulent concentration flux. Lines for
the LES data represent ensemble averages and the shaded areas indicate the corresponding
value range among the four ensemble members.
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in the LES and the experiment and the effects of the difference of the inflow boundary647

conditions in the wind tunnel (constant-direction boundary layer profile) as opposed to the648

fully developed periodic boundary conditions in the LES.649

As discussed above, the patterns seen in Fig. 9a support the gradient-approach taken to650

derive the vertical exchange velocities for the UoR–SNM network model (Eq. 7). Further-651

more, it was found that the turbulent component of the vertical exchange, 〈c′w′∗〉z/H=1, on652

average is dominant compared to the advective transport, 〈(CW )∗〉z/H=1, for this scenario in653

agreement with Belcher et al. [6]. Vertical exchange velocities for UoR–SNM and SIRANE–654

2 were determined from the LES by ensemble-averaging individual results obtained in re-655

gions of significantly high flux magnitudes, resulting in Ex = 0.1 m s−1, Ey = 0.15 m s−1
656

and Ei = 0.12 m s−1 for x streets, y streets and intersections, respectively. Ex is about 30 %657

lower than Ey, indicating that the recirculating flow in the short street reduces the potential658

for vertical exchange. Applying the SIRANE parametrisation given in Eq. (8) together with659

the facet-averaged LES value of 〈σw〉z/H=1 at the UCL top resulted in exchange velocities660

of Ex = 0.07 m s−1 and Ey = 0.08 m s−1. These agree well with Ex = Ey = 0.09 m s−1
661

that were obtained via the parametrisation for σw based on u∗ that is used in SIRANE–1.662

However, compared to Ey = 0.15 m s−1 derived from Eq. (7) the SIRANE–1 value of Ey is663

40 % lower. During the model run, both network models determine the direction of vertical664

transport for a certain street via the local vertical concentration gradient between UCL and665

above-roof concentrations. A summary of all exchange velocities is given in Tab. 3.666

4.2.3 Mixing conditions667

The flux parametrisations in the street-network modelling framework (Eqs. 5 and 6) are668

based on the assumption that pollutants are well-mixed within each box, i.e. spatial gra-669

dients within individual streets are small [6]. The appropriateness of this approximation is670

examined on the basis of the high-resolution LES data. Figure 10 shows the distribution671

of spatial root-mean-square (r.m.s) values of concentrations in each network-model box as672

a fraction of box-averaged concentrations for two layers: 0 ≤ z/H ≤ 1 and 1 ≤ z/H ≤ 2.673

The smaller the value of this ratio, the better the mixing within the volume. Not surpris-674

ingly, upwind of the source and at the lateral edges of the plume, the well-mixed condition675

is not satisfied and spatial concentration fluctuations are of the same order or greater than676

the volume average. Particularly strong gradients are found in and around the source street,677

whereas only a few streets downwind the pollutants had enough time to become well mixed.678

Hence, in those plume regions where significant levels of concentrations are encountered679

(Fig. 7) the street-network dispersion models can be expected to perform best.680

Within the UCL, two interesting patterns can be observed: On the one hand, the inter-681

section boxes tend to be less well mixed than the neighbouring street boxes, whereas the682

short x streets, on the other hand, tend to be better mixed than the surrounding boxes. Both683

features become more apparent at the plume edges. The patterns can be related to the typical684

flow behaviour observed in the DIPLOS array as discussed in Sect. 4.1 (see Fig. 4). In the685

x streets pollutants are trapped within the prevalent recirculating flow and hence become686

better distributed over the street volume. The intersection flow is strongly three-dimensional687

and thus more prone to the mixing-in of ‘clean’ ambient air, which becomes increasingly688

relevant at the edges of the plume.689
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Fig. 10: Spatial r.m.s. values of concentrations in each network-model box as a fraction of
box-averaged concentrations within the UCL (left; 0 ≤ z/H ≤ 1) and in the external layer
just above the buildings (right; 1 ≤ z/H ≤ 2) derived from the LES. Statistics are shown
for boxes where [C∗] ≥ 1 ·10−4. The thick red lines border the part of the plume where the
volume-averaged concentrations are ≥ 1 ·10−2.

5 Dispersion model evaluation690

The above analyses showed that the DIPLOS geometry represents an interesting test envi-691

ronment for the dispersion models. While still being a strongly idealised setting, the geomet-692

ric asymmetry together with the existence of a mixture of different flow regimes can pose693

challenges to fast dispersion models.694

In the following, the plume predictions from the different dispersion models intro-695

duced in Sect. 3 (Tab. 1) are inter-compared. To provide a suitable benchmark for the inter-696

comparison, concentration data from the LES are used as a reference. The wind-tunnel data697

are not spatially extensive enough to be used directly for this purpose, but can instead be698

employed to validate the LES. Indeed, comparison with the statistics from the wind-tunnel699

model in this study and in previous validation exercises carried out in DIPLOS [23,32]700

showed that the LES overall represents the salient dispersion features well for this test case,701

given the uncertainties associated with the simulation and the experiment. While most of702

the following quantitative comparisons are between the LES and the dispersion models, the703

experimental data presented in Sect. 4.2 will be revisited for a qualitative appraisal. As we704

set out in this study to evaluate the street-network modelling approach in comparison to705

the more established model categories, we need to compare the model results in a common706

framework. For that, the space-resolved output from the LES, the Gaussian and Lagrangian707

models is converted into volume-averaged concentrations in boxes covering streets and in-708

tersections within the UCL as in the street-network representation. Although this means709

sacrificing spatial resolution, the assessment of danger zones based on street-integrated con-710
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centrations is more practical in emergency-response contexts. Hence, the space-resolution711

limitation of the street-network modelling is no detriment for this type of application.712

5.1 Qualitative model inter-comparison713

A qualitative inter-comparison of model performances is presented below in terms of con-714

centration footprints and plume characteristics in the DIPLOS canopy. A quantitative as-715

sessment of model spreads and biases is given in Sect. 5.2.716

5.1.1 Plume footprints717

Figure 11 compares volume-averaged UCL concentrations, [C∗], from all dispersion models718

with the LES output. A quantitative comparison of these results is shown in Fig. 12 in719

terms of horizontal transects of volume-averaged concentrations along x (‘lateral’) and y720

(‘longitudinal’) directions and corresponding transects of point-wise concentrations from721

the experiment in a height of z/H = 0.5. Due to the different nature of wind-tunnel data722

compared to the volume averages, these are meant to supplement the qualitative appraisal723

of the plume patterns.724

The decisive difference between the Gaussian models concerns the added plume deflec-725

tion, either based on the above-rooftop flow (GAUSS–1; plume centreline along −54◦) or726

on the representative UCL wind direction (GAUSS–2; −78◦). The latter clearly resulted in727

a better agreement with the LES and also with the footprint in the wind tunnel at half the728

building height (Fig. 7). The strong lateral plume spread is governed by the enhancement729

term for σy (Eq. 2) for light-wind situations. Not considering this modification of the classic730

Briggs formulation results in too narrow plumes and a significantly poorer agreement with731

the LES (not shown). Naturally, the Gaussian models do not capture topological dispersion732

effects like the strong pollutant channelling into −y direction and the uneven splitting in in-733

tersections, which resulted in the asymmetric plume shape. The symmetry constraint leads to734

too strong upwind spread into −x direction in GAUSS–2 and hence a much broader plume735

in the far-field (∆x ' 22H) compared to the LES (∆x ' 18H) at y/H = −13.5 (Fig. 12).736

The best quantitative agreement with the LES is found farther away from the source in those737

downwind regions of the plume where material is well-mixed within and above the canopy738

(Fig. 10) and where the magnitude of vertical concentration fluxes at the canopy top is small739

(Fig. 9a).740

A much better overall agreement with the plume shape of the LES and the wind tunnel741

is found in the outputs of the Lagrangian model. Some differences can be observed in the742

runs based on the two native QUIC flow modules, QUIC (URB) and QUIC (CFD). In the743

former, a strong lateral spread of the plume into −x streets is observed, which close to the744

source is comparable to GAUSS–2 (see y/H = −4.5 transect in Fig. 12). This behaviour745

can be attributed to the stronger negative u-component of the horizontal flow observed in746

the QUIC–URB wind fields (see Figs. 4 and 5), which leads to a redistribution of material747

from the intersections into the upwind short streets, there entering the large recirculation748

zone. It is noted that there are no data available from the wind-tunnel campaign to further749

investigate the spread of the plume into −x direction. The downstream extent (+x) of the750

plume and the distribution of scalars along the x/H = 0 transects through the source street,751

however, agree well with the reference data.752

Although the flow field from the RANS model used in QUIC (CFD) in large part showed753

a flow channelling along the y streets and through the intersections similar to the turbulence-754
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Fig. 11: Volume-averaged concentrations in streets and intersections within the canopy layer
(0 ≤ z/H ≤ 1) for the LES reference data and the different dispersion models. The solid
black line indicates the forcing wind direction of −45◦.

resolving LES, the resulting plume orientations are somewhat different. QUIC (CFD) has755

stronger transport of material into +x direction than the LES as a result of the stronger out-756

flow from the intersections into the downwind short streets (Fig. 4, Tab. 3). The qualitative757

comparison with the point-wise concentrations from the wind tunnel also shows an under-758

prediction along the x/H = 0 transect, but a better agreement at some distance away from759

the source (y/H = −13.5). QUIC–PLUME was also run on turbulence fields provided di-760

rectly by the RANS turbulence model. This resulted in similar results to the QUIC (CFD)761

output presented here, but with a slightly reduced lateral plume spread (not shown).762
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Fig. 12: Comparison of horizontal transects of volume-averaged concentration along the
x-axis (top) and along the y-axis (bottom) in the canopy layer. Single-point measurements
from the wind tunnel (WT) at a height of z/H = 0.5 are shown as well for the sake of
completeness. The source position of x/H = y/H = 0 is indicated by a dashed vertical line.

Not surprisingly, the best QUIC–PLUME agreement with the LES is found for the QUIC763

(LES) set-up. Differences apparent here are only attributable to the Lagrangian dispersion764

modelling component, which in this case demonstrates the suitability of the QUIC–PLUME765

urban dispersion algorithms. The largest deviations are apparent along the plume centreline,766

where the model over-predicts concentration levels as seen in the longitudinal transect at767

x/H = 0 in Fig. 12 compared to the Eulerian solution from the LES and the experimental768

data. This is paralleled by a slightly larger lateral spread (+x) of the plume compared to769

QUIC (URB) and QUIC (CFD). We also observe that QUIC (LES) is the only model where770

the maximum volume-averaged concentration is not located in the source street, but in the771

first downwind intersection box.772

As expected, the street-network model UoR–SNM run on LES velocity parameters773

matches the longitudinal and lateral concentration profiles computed by the LES extremely774

well. This demonstrates that, despite the minimal flow specifications needed, the simple flux-775

balance methodology is suitable for capturing important features of canopy-layer dispersion.776

This is largely attributable to the fact that the model formulation explicitly represents the777

street topology and directly accounts for associated topological dispersion effects. Running778

UoR–SNM with the re-entrainment term switched on and off is helpful to reveal the sig-779

nificance of adequately representing the vertical pollutant fluxes. This analysis showed that780

in regions where re-entrainment dominates (see Fig. 9a), volume-averaged UCL concen-781
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Fig. 13: Schematic of the flux distribution in the intersections for SIRANE–1 with 〈Us〉 =
〈Vs〉 predicted by the SIRANE flow model (top left), and SIRANE–2 with 〈Us〉 ' 0.3〈Vs〉
based on the LES information (bottom left) together with the corresponding canopy-layer
plume footprints and the mean plume advection direction. The forcing wind direction is
indicated by thick arrows.

trations can be enhanced by an order of magnitude or more (not shown). As evident from782

comparing Figs. 9a and 11, the re-entrainment regions in the LES feature non-negligible783

concentration levels in agreement with the experiment (Fig. 7). The strongest deviations be-784

tween the demonstration model UoR–SNM and the LES occur very close to the source and785

at the plume edges, where the well mixed-condition breaks down.786

SIRANE–1, which was run in operational mode with parametrisations for horizontal ad-787

vection and vertical exchange velocities, predicts a plume orientation that is much closer to788

the −45◦ forcing wind direction than any of the other models. As anticipated in Sect. 4.1.1,789

the larger 〈Us〉 computed the SIRANE–1 flow model resulted in enhanced advection along790

the short x streets as compared to the LES, which also affected the distribution of material791

from the intersection into the downwind streets. Overall, the plume is less well diluted far-792

ther away from the source than in the LES or in the experiment (y/H =−13.5 and x/H = 4793

transects in Fig. 12). Unlike SIRANE–2, for which 〈Us〉< 〈Vs〉 resulted in an uneven branch-794

ing of the plume in the intersection, in SIRANE–1 the material is uniformly distributed into795

the downwind streets since 〈Us〉 = 〈Vs〉. The observed deviation from the −45◦ forcing di-796

rection is induced by the rectangular shape of the buildings.797

This behaviour is schematically illustrated in Fig. 13. As a consequence the models pre-798

dict considerably different plume orientations. The even plume splitting in the intersections799

in SIRANE–1 also led to a reduced lateral spread of pollutants. This spatial confinement800

of material together with the reduced vertical exchange velocities compared to SIRANE–2801
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(Tab 3) is responsible for the significant over-prediction of concentration levels compared802

to the volume-averaged LES and the point-wise wind-tunnel data. SIRANE–2, which was803

provided with representative velocities and hence accounts for the dominance of pollutant804

flux down the y streets from the intersections, shows a high level of agreement with the LES.805

5.2 Quantitative model inter-comparison806

In order to quantify the differences between the dispersion models and the LES, we use a807

set of well-established dimensionless validation metrics [24,13,40]. These are the factor of808

two of observations (FAC2), the fractional bias (FB), the normalised root mean square error809

(NMSE), the geometric mean bias (MG), geometric variance (VG) and the correlation coef-810

ficients (R) as defined in Eqs. 11–16. As for the qualitative comparison, the quantification of811

differences between the LES, Co, and the model predictions, Cp, is conducted in terms of a812

data-pairing of non-dimensionalised, box-averaged UCL concentrations, [C∗]. Curly brack-813

ets, {. . .}, indicate the average over the entire data sample of N box-averaged concentrations814

and σC are the corresponding sample standard deviations.815

Factor of two:816

FAC2 =
1
N ∑

i
Fi with Fi =

{
1, if 1

2 ≤
Cp,i
Co,i
≤ 2

0, otherwise
(11)

Fractional bias:817

FB = 2
({Co}−{Cp})
({Co}+{Cp})

(12)

Normalised mean square error:818

NMSE =
{(Co−Cp)

2}
{Co}{Cp}

(13)

Geometric mean bias:819

MG = exp({lnCo}−{lnCp}) (14)

Geometric variance:820

VG = exp
(
{(lnCo− lnCp)

2}
)

(15)

Correlation coefficient:821

R =
{(Co−{Co})(Cp−{Cp})}

σCo σCp

(16)

Fig. 14 shows the underlying scatter plots for the LES and the dispersion models, as822

well as a comparison of point-values at z/H = 0.5 from the LES and the wind tunnel to823

complement the earlier qualitative comparison in Fig. 7. Here we used a nearest-neighbour824

approach to match the LES data to the exact measurement locations and heights of individual825

wind-tunnel data points.826

As discussed in detail by Chang and Hanna [24], in order to obtain a comprehensive827

picture about the model, different validation metrics should be consulted together. While828

FB and MG measure the systematic bias of the model and can be influenced by cancelling829

errors, NMSE and VG measure the mean relative scatter between the data pairs and in-830

clude systematic and random errors. By using a logarithmic framework, MG and VG are831
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less susceptible to infrequently occurring very high or low concentrations than their ‘linear’832

counterparts, FB or NMSE. This is beneficial in test cases such as the one in this study,833

where results are compared over several decades of concentrations. R is not a reliable indi-834

cator of model accuracy since it is dominated by the fact that concentrations will generally835

decrease with distance from the source [24]. However, it provides information about the836

level of common variation in both data sets and can be useful in combination with the other837

metrics. FAC2 and FAC5 provide the most robust measure with regard to the influence of838

isolated events of very good or bad agreement between data pairs.839

FAC2, FAC5, FB, NMSE and R were obtained from data pairs for which either the LES840

or the model output was ≥ 1 · 10−3 so that misses and false positives are reflected in the841

metrics. This is not as easy for the MG and VG metrics as these can be overly affected by842

very low concentration values and are undefined for zero concentrations (plume misses a843

street completely). For these metrics we follow the recommendation by Chang and Hanna844

[24] and impose a minimum threshold of [C∗] = 1 ·10−3 on all data.845

Table 4 lists the metrics together with the target values for a model that perfectly matches846

the LES. As a point of reference for the assessment of urban dispersion models, Chang and847

Hanna [24] and later Hanna and Chang [40] have proposed the following acceptance criteria848

for a ‘good’ model performance: FAC2> 0.3 (or > 0.5 based on earlier assessments), |FB|<849

0.67, NMSE < 6, 0.7 < MG < 1.3 and V G < 1.6. In other words, the mean model bias850

as measured by FB and MG should be within 30 % of the mean and the mean relative851

scatter (NMSE and VG) within approximately a factor of 2 of the mean. It has to be noted852

that these acceptance thresholds were originally proposed for arc-maximum concentrations,853

but meanwhile are also commonly applied to assess the model performance over the entire854

extent of the plume. In general, however, it is important to highlight that such thresholds855

should be understood as being strongly case-specific and linked to the margins of error that856

are acceptable in the scenario under investigation. In the absence of such constraints in this857

study, we revert to the criteria proposed by Hanna and Chang [40].858

Only GAUSS–2, QUIC (URB), QUIC (LES) and UoR–SNM are within a factor of 2859

of the LES more than 30 % of the time. Of these, QUIC (URB) is the only model that860

was not provided with information from the LES flow. Only QUIC (LES) and UoR–SNM861

meet the less stringent FAC5 criterion more than 75 % of the time. For both FAC2 and862

FAC5, SIRANE–1 persistently shows the lowest values. In contrast to that, the overall low863

FB indicates only small systematic bias in all models. Inspecting the corresponding scatter864

plots in Fig. 14, however, shows that in some cases this is a result of error cancellation865

of over and under-predictions. This is particularly apparent in the plots for QUIC (CFD)866

and SIRANE–1, where data pairs group symmetrically about the 1-to-1 line. According867

to the MG metric, all models except for QUIC (LES) which is closest to the ideal value868

of 1.0, have a tendency to over-predict mean concentrations (positive bias). The strongest869

deviations from the LES reference are associated with approximately a factor of 2 mean870

over-prediction as seen for the Gaussian models (MG ' 0.5). The VG metric shows the871

highest relative scatter with almost a factor of 7 of the mean for GAUSS–1 as a result of872

the largest mismatch of plume footprints. QUIC (CFD) and SIRANE–1, which showed a873

similar tendency in the plume centreline although associated with different concentration874

levels, have comparable VG values indicating a relative scatter of about a factor of 4. QUIC875

(URB), QUIC (LES) and UoR–SNM exhibit the smallest scatter. This is also reflected in876

very high correlation coefficients compared to GAUSS–1 and SIRANE–1.877

Parts of the above results are visually summarised in a Taylor diagram [76] in Fig. 15,878

based on the normalised standard deviation, σCp/σCo , the normalised relative root-mean-879
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Fig. 14: Scatter plots of model predictions versus the LES based on volume-averaged UCL
concentrations [C]∗. In contrast to that, the upper left plot shows LES and wind-tunnel single-
point data pairs at a nominal height of z/H = 0.5 (see plumes in Fig. 7). Thick solid lines
indicate the ideal 1-to-1 relationship; dashed and dashed-dotted lines show the factor-of-2
and factor-of-5 margins, respectively.

square error and the correlation coefficient, which all measure the random (non-systematic)880

scatter are related to each other through the law of cosines [24].881

The diagram shows a cluster of models that have a high level of agreement with the882

LES (GAUSS–2, QUIC (URB), SIRANE–2 and UoR–SNM) with comparably low root-883

mean-square errors (∼ 0.4) and high correlation (0.9–0.96), but overall smaller variability884

compared to the LES reference (σCp/σCo < 1). SIRANE–1 and GAUSS–1 show compa-885

rable metrics with larger random errors than the other models. Only the output from the886

Lagrangian dispersion runs based on the CFD–RANS and LES wind fields overall exhibit a887

larger variability than the LES, which could be related to the fact that the material is diluted888

over a larger lateral region than in the LES or QUIC (URB). An interesting observation is889

that QUIC (URB) agrees better with the LES than QUIC (LES), although the latter is run on890

the LES mean flow fields that showed some significant differences to the flow pattern from891
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Table 4: Evaluation metrics for all models in comparison to the LES reference data. All
metrics were computed from box-averaged concentrations [C∗] within the UCL. The target
values in the sense of a perfect agreement with the LES are given together with the maximum
box-averaged concentrations in the domain, [C∗]max, from all data sets.

Model [C∗]max FAC2 FAC5 FB NMSE MG VG R

Target value — 1.0 1.0 0.0 0.0 1.0 1.0 1.0

LES 3.42 — — — — — — —
GAUSS–1 3.47 0.21 0.42 0.07 4.11 0.54 38.44 0.76
GAUSS–2 3.49 0.37 0.60 0.13 1.89 0.56 3.70 0.90

QUIC (URB) 2.69 0.44 0.71 -0.06 0.71 0.73 2.46 0.96
QUIC (CFD) 4.99 0.23 0.55 -0.11 1.95 0.85 7.92 0.89
QUIC (LES) 5.71 0.58 0.86 -0.26 1.46 1.02 1.66 0.96

UoR–SNM 2.91 0.60 0.83 0.12 1.06 0.80 1.60 0.96
SIRANE–1 2.70 0.11 0.34 -0.27 5.10 0.61 7.27 0.65
SIRANE–2 2.87 0.29 0.42 -0.23 2.41 0.74 3.79 0.86

Fig. 15: Taylor diagram based on the normalised standard deviation (dotted arcs), the nor-
malised relative root-mean-square error (solid arcs) and the correlation coefficient R (cosine
of the angle to the horizontal axis; dotted lines). The thick dashed arc indicates σCp/σCo = 1.
The star symbol shows the LES reference.

QUIC–URB (Fig. 4). Given the differences in the concentration fields, this implies that in892

QUIC (URB) the component of flow reversal (−x) counteracts the tendency of the dispersion893

module to produce a stronger downwind spread (+x) of the plume. Interestingly, among the894

well-informed models, the performance is not directly correlated with the amount of flow895

information provided. Although QUIC (LES) was run on data of the entire high-resolution896

LES mean flow, the Lagrangian model did not outperform the much simpler Gaussian and897

street-network models that were only provided with few velocity parameters.898



Evaluation of fast atmospheric dispersion models in a regular street network 33

6 Further discussions and conclusions899

We presented a process-based evaluation of different methods for fast urban dispersion mod-900

elling for emergency-response applications. The focus was put on the comparison of UCL901

concentration footprints resulting from the continuous release of pollutants from a ground902

source. Representatives across the hierarchy of dispersion modelling approaches were evalu-903

ated: (i) Gaussian and (ii) Lagrangian models and the comparatively new (iii) street-network904

modelling. The urban test bed, albeit with geometric simplicity, induced complex mean flow905

patterns that resulted in a strong plume asymmetry. Capturing the resulting topological dis-906

persion features proved to be a challenge for the models tested.907

Running the models in different configurations with respect to the detail of flow in-908

formation provided, resulted in large differences in performance when compared to data909

from high-resolution LES. The strongest effect was seen in the two simplest modelling cat-910

egories: the Gaussian and the street-network models. The simple baseline Gaussian plume911

model used in this study improved significantly after some degree of building-awareness912

was added by means of a plume deflection in the UCL. However, the geometry-induced913

asymmetry of the plume and other topological dispersion features cannot be captured as914

there is no explicit awareness of the urban morphology in this model class. It is empha-915

sised, however, that more advanced Gaussian dispersion models are available as outlined in916

Sect. 1.2, some of which have added capabilities to take into account bulk effects of typical917

street-canyon flow and validation studies of such Gaussian plume or puff models can be918

found in the literature, e.g. [16,60].919

Running the street-network model UoR–SNM on flow parameters completely derived920

from the reference LES provided a demonstration of the suitability of the street-network921

methodology for canopy-layer dispersion modelling, and showed that the main relevant922

dispersion processes were captured. Advective transport mechanisms like pollutant chan-923

nelling along streets and plume splitting in intersections were adequately represented by924

flux-balance parametrisations, just as the vertical turbulent transfer of pollutants between925

UCL and external boundary layer. Naturally, detailed flow information is not usually avail-926

able in an emergency event. Hence, operational urban dispersion models have to rely on927

suitable parametrisations of relevant building-induced flow features.928

Lagrangian models require the largest amount of input information in terms of 3D mean929

flow fields that need to be provided by an external module. Running QUIC–PLUME offline930

on flow fields from three different building-resolving simulations (diagnostic, CFD–RANS931

and LES) highlighted the strong dependence of the dispersion pattern on the underlying932

flow structure. The work also highlighted the benefits of conducting basic process studies933

like this in idealised geometries. In the DIPLOS array processes are complex enough to934

be challenging for models, while it is still possible to understand causalities. Initial runs935

with the diagnostic QUIC–URB model for this study, for example, revealed bugs in the flow936

module, which had a strong effect on the plume dispersion behaviour. Once identified, these937

bugs were easily corrected by the developers. Such errors would have been much harder to938

detect in more complex geometrical settings where it can be difficult to distinguish genuine939

features from artefacts.940

6.1 Run-speed requirements941

Regarding computing times, the two street-network dispersion models and the Gaussian942

model performed comparably with run speeds of O(1 min) on a typical desktop computer.943
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We ran all QUIC simulations in parallel on two cores on a Windows computer with an Intel944

Core i5 3.3 GHz processor. This resulted in run times for the QUIC–URB flow module of945

approx. 1 min and of ∼ 1 h for the QUIC–CFD RANS model. Additional computing times946

from the Lagrangian stochastic model also were in the order of 1 h. However, it is empha-947

sized that the QUIC–PLUME set-up used in this study was designed for the purpose of an948

evaluation exercise and not for operational use. Much faster computing times in complex949

urban environments of O(1 min) to O(10 min) can be achieved with QUIC–PLUME in950

general and for the DIPLOS geometry in particular by running on more cores and using951

an optimised combination of fewer particles, larger model time steps and shorter averaging952

periods [M. Brown, pers.comm.]. Current advancements of the QUIC system focus on the953

optimisation of computational speed by running on graphics processors [66,64]. Based on954

these studies, it is likely that the new GPU–PLUME model can run up to 180 times faster955

than QUIC–PLUME for typical urban dispersion scenarios.956

6.2 Strengths and limitations of the street-network approach957

One aim of this study was to assess the performance of street-network models against more958

established methods based on an idealised test case with a building packing density rep-959

resentative of city centres. While requiring much fewer velocity input parameters, in the960

idealised-geometry scenario investigated here the simple street-network models performed961

equally well or better compared to the more complex Lagrangian dispersion model run on962

full 3D wind fields, when compared to data from the high-resolution, turbulence-resolving963

LES. At the same time, computational costs and computing times associated with the net-964

work approach are low. Unlike the similarly inexpensive Gaussian plume models, street-965

network models directly account for building-induced dispersion effects. We showed that966

the conceptual design of models like SIRANE and UoR–SNM enables to represent the dom-967

inant processes affecting pollutant dispersion in the DIPLOS canopy: topological dispersion968

effects like channelling along streets and branching at intersections as well as pollutant ex-969

change with the external flow.970

The basic rationale behind the approach is to study urban dispersion at the scales of in-971

terest for emergency-response applications: entire street canyons and intersections. For the972

regular, equal-height DIPLOS geometry, we could show that such a volume-averaged rep-973

resentation of concentrations becomes representative after a short distance from the source974

and particularly in those regions of the plume where concentration levels are non-negligible.975

However, the spatial variability of the mean concentration patterns is expected to be en-976

hanced in the case of non-stationary wind forcing as encountered in the natural atmosphere.977

Naturally this model formulation is also associated with uncertainties regarding the exact lo-978

cation of emission sources and receptors within a street segment. The location of the source979

with regard to the surrounding buildings and the prevailing flow patterns can have a strong980

influence on the near-field dispersion behaviour. In scenarios involving very long streets a981

too coarse resolution has to be avoided by subdividing into shorter segments.982

The study highlighted the importance of flow-field modelling in all types of operational983

dispersion models. Whether or not the driving flow is representative of the encountered984

scenario to a large degree determines the prediction quality that can be achieved with the985

dispersion model. An evaluation of the flow parametrisations in SIRANE showed a depen-986

dence of the accuracy of modelled horizontal advection velocities on the length of the street.987

In short streets the modelling assumption of a fully developed flow field does not apply,988

which resulted in an over-prediction of along-street velocities in the current test case. This989
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had knock-down effects on the way in which material is redistributed from the intersection990

into the downwind streets. Not capturing the uneven branching in the intersections of the991

DIPLOS array resulted in significant differences between plume centrelines in SIRANE–1992

and the LES. Related to the advection characteristics in the UCL is the representation of993

deviations from the forcing wind direction in the roughness sublayer above the buildings.994

The current SIRANE parametrisation of the vertical turbulent exchange velocity based on995

u∗ does not account for local mixing effects in the roughness sublayer above the buildings996

and hence is not a complete way of representing this process.997

Further limitations of the street-network approach are expected to result from the fact998

that SIRANE and UoR–SNM were developed for street-canyon dispersion in urban environ-999

ments with high packing density, where there is a sufficient degree of decoupling between1000

UCL and the external boundary layer. On the city-scale, however, urban environments are1001

comprised of areas with vastly different morphological characteristics, for some of which1002

the street-network modelling framework breaks down. For dispersion through ‘open’ ar-1003

eas like parks or squares, through very wide streets (wake interference or isolated roughness1004

regimes) or streets only partially bordered by buildings different processes need to be consid-1005

ered and parametrised. Additionally, the need to account for environments with a significant1006

heterogeneity of building heights is an area of ongoing model development. Furthermore,1007

studying effects of atmospheric stratification (stable, unstable) on urban dispersion and their1008

parametrisation in street-network models have become a priority for further experimental1009

and computational work.1010
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