1,191 research outputs found
Nanoscale magnetometry through quantum control of nitrogen-vacancy centres in rotationally diffusing nanodiamonds
The confluence of quantum physics and biology is driving a new generation of
quantum-based sensing and imaging technology capable of harnessing the power of
quantum effects to provide tools to understand the fundamental processes of
life. One of the most promising systems in this area is the nitrogen-vacancy
centre in diamond - a natural spin qubit which remarkably has all the right
attributes for nanoscale sensing in ambient biological conditions. Typically
the nitrogen-vacancy qubits are fixed in tightly controlled/isolated
experimental conditions. In this work quantum control principles of
nitrogen-vacancy magnetometry are developed for a randomly diffusing diamond
nanocrystal. We find that the accumulation of geometric phases, due to the
rotation of the nanodiamond plays a crucial role in the application of a
diffusing nanodiamond as a bio-label and magnetometer. Specifically, we show
that a freely diffusing nanodiamond can offer real-time information about local
magnetic fields and its own rotational behaviour, beyond continuous optically
detected magnetic resonance monitoring, in parallel with operation as a
fluorescent biomarker.Comment: 9 pages, with 5 figure
SESAME: exploring small businesses' behaviour to enhance resilience to flooding
In the United Kingdom, small and medium sized enterprises (SMEs) account for approximately 99.9% of businesses, 60% of the working population and 47% annual turnover. However, despite the important contribution that SMEs make to the economy, this size of business remains under-researched with a significant gap in understanding how the disruption caused by flooding impacts on SMEs from the time at which a flood event occurs through to the 'return' to normal operations. Business continuity management is a recognised approach for enhancing organisational resilience to major disruptions (ISO 22301, 2012). However, this strategic approach to building such resilience in SMEs is under-explored in the literature with a limited range of empirical data to draw on. This paper presents an overview of an inter-disciplinary research project funded by the UK's Engineering and Physical Science Research Council, called SESAME, which examines SMEs' operational response and preparedness to flooding. Furthermore, SESAME consists of four stands of research which bring together a number of disciplines including agent based modelling and simulation, flood modelling, business continuity management, economic modelling and behavioural science. This paper provides an overview of the different research stands within the SESAME project aimed at enhancing SMEs' resilience to flooding
An angle-resolved soft x-ray spectroscopy study of the electronic states of single crystal MgB2
Angle-resolved soft x-ray measurements made at the boron K-edge in single
crystal MgB2 provide new insights into the B-2p local partial density of both
unoccupied and occupied band states. The strong variation of absorption with
incident angle of exciting x-rays permits the clear separation of contributions
from \sigma states in the boron plane and \pi states normal to the plane. A
careful comparison with theory accurately determines the energy of selected
critical points in the conduction band. Resonant inelastic x-ray emission
at an incident angle of 15 degrees shows a large enhancement of the emission
spectra within about 0.5 eV of the Fermi level that is absent at 45 degrees and
is much reduced at 60 degrees. We conclude that momentum transferred from the
resonant inelastic x-ray scattering (RIXS) process couples empty and filled
states across the Fermi level.Comment: Accepted to PRB. 13 pages, 6 figure
Long-lived driven solid-state quantum memory
We investigate the performance of inhomogeneously broadened spin ensembles as
quantum memories under continuous dynamical decoupling. The role of the
continuous driving field is two-fold: first, it decouples individual spins from
magnetic noise; second and more important, it suppresses and reshapes the
spectral inhomogeneity of spin ensembles. We show that a continuous driving
field, which itself may also be inhomogeneous over the ensemble, can enhance
the decay of the tails of the inhomogeneous broadening distribution
considerably. This fact enables a spin ensemble based quantum memory to exploit
the effect of cavity protection and achieve a much longer storage time. In
particular, for a spin ensemble with a Lorentzian spectral distribution, our
calculations demonstrate that continuous dynamical decoupling has the potential
to improve its storage time by orders of magnitude for the state-of-art
experimental parameters
Metabolomic Profiling of Bile Acids in Clinical and Experimental Samples of Alzheimer’s Disease
Certain endogenous bile acids have been proposed as potential therapies for ameliorating Alzheimer’s disease (AD) but their role, if any, in the pathophysiology of this disease is not currently known. Given recent evidence of bile acids having protective and anti-inflammatory effects on the brain, it is important to establish how AD affects levels of endogenous bile acids. Using LC-MS/MS, this study profiled 22 bile acids in brain extracts and blood plasma from AD patients (n = 10) and age-matched control subjects (n = 10). In addition, we also profiled brain/plasma samples from APP/PS1 and WT mice (aged 6 and 12 months). In human plasma, we detected significantly lower cholic acid (CA, p = 0.03) in AD patients than age-matched control subjects. In APP/PS1 mouse plasma we detected higher CA (p = 0.05, 6 months) and lower hyodeoxycholic acid (p = 0.04, 12 months) than WT. In human brain with AD pathology (Braak stages V-VI) taurocholic acid (TCA) were significantly lower (p = 0.01) than age-matched control subjects. In APP/PS1 mice we detected higher brain lithocholic acid (p = 0.05) and lower tauromuricholic acid (TMCA; p = 0.05, 6 months). TMCA was also decreased (p = 0.002) in 12-month-old APP/PS1 mice along with 5 other acids: CA (p = 0.02), β-muricholic acid (p = 0.02), Ω-muricholic acid (p = 0.05), TCA (p = 0.04), and tauroursodeoxycholic acid (p = 0.02). The levels of bile acids are clearly disturbed during the development of AD pathology and, since some bile acids are being proposed as potential AD therapeutics, we demonstrate a method that can be used to support work to advance bile acid therapeutics
- …