96 research outputs found

    The study of expanded tri-lobed flap in a rabbit model: possible flap model in ear reconstruction?

    Get PDF
    BACKGROUND: Local flaps are widely used in reconstructive surgery. Tri-lobed skin flap is a relatively new flap and there has been no experimental model of this flap. This flap can be used for repair of full thickness defects in the face, ears and alar region. Based on the size of ears in a rabbit, we designed a model of ear reconstruction using expanded tri-lobed flap. Local flaps are more advantageous in that they provide excellent color and texture matching up with those of the face, adequately restore ear contour, place scars in a favorable location and ideally accomplish these goals in a single stage with minimal donor site morbidity. METHODS: Eight adult New Zealand rabbits were divided into two groups. 50 ml round tissue expander were implanted to four rabbits. After completion of the expansion, a superiorly based tri-lobed flap was elevated and a new ear was created from the superior dorsal skin of each rabbit. Scintigraphy with Technetium-99m pertecnetate was performed to evaluate flap viability. RESULTS: Subtotal flap necrosis was seen in all animals in non-expanded group. New ear in dimensions of the original ear was created in expanded group without complication. Perfusion and viability of the flaps were proved by Technetium-99m pertecnetate scintigraphy. CONCLUSION: According to our knowledge this study is the first to demonstrate animal model in tri-lobed flap. Also, our technique is the first application of the trilobed flap to the possible ear reconstruction. We speculated that this flap may be used mastoid based without hair, in human. Also, tri-lobed flap may be an alternative in reconstruction of cylindrical organs such as penis or finger

    Micronutrient supplements for children after deworming

    Get PDF
    The availability of a few inexpensive, single dose drugs to treat soil-transmitted helminths and schistosomiasis offers the potential to reduce a considerable burden of acute disease, especially among children sub-Saharan Africa. These treatments are being promoted as "rapid impact interventions" However, if helminth infections cause underweight, stunting, anaemia and impaired mental development in children, how will removing worms alone lead to recovery without treating the underlying deficits that have been caused or made worse by helminth disease? Energy, protein and micronutrients are required by children who are underweight or who have stunted growth; children who are anaemic will require iron and other micronutrients for haemopoiesis; and children who have lost education will need remedial teaching. Treating neglected worm diseases is an essential first step to good health, but anthelmintic drugs need to be integrated with simple and inexpensive nutritional interventions such as micronutrient supplements to promote recovery and have a rapid effect

    Linking neural and symbolic representation and processing of conceptual structures

    Get PDF
    We compare and discuss representations in two cognitive architectures aimed at representing and processing complex conceptual (sentence-like) structures. First is the Neural Blackboard Architecture (NBA), which aims to account for representation and processing of complex and combinatorial conceptual structures in the brain. Second is IDyOT (Information Dynamics of Thinking), which derives sentence-like structures by learning statistical sequential regularities over a suitable corpus. Although IDyOT is designed at a level more abstract than the neural, so it is a model of cognitive function, rather than neural processing, there are strong similarities between the composite structures developed in IDyOT and the NBA. We hypothesize that these similarities form the basis of a combined architecture in which the individual strengths of each architecture are integrated. We outline and discuss the characteristics of this combined architecture, emphasizing the representation and processing of conceptual structures

    History of clinical transplantation

    Get PDF
    The emergence of transplantation has seen the development of increasingly potent immunosuppressive agents, progressively better methods of tissue and organ preservation, refinements in histocompatibility matching, and numerous innovations is surgical techniques. Such efforts in combination ultimately made it possible to successfully engraft all of the organs and bone marrow cells in humans. At a more fundamental level, however, the transplantation enterprise hinged on two seminal turning points. The first was the recognition by Billingham, Brent, and Medawar in 1953 that it was possible to induce chimerism-associated neonatal tolerance deliberately. This discovery escalated over the next 15 years to the first successful bone marrow transplantations in humans in 1968. The second turning point was the demonstration during the early 1960s that canine and human organ allografts could self-induce tolerance with the aid of immunosuppression. By the end of 1962, however, it had been incorrectly concluded that turning points one and two involved different immune mechanisms. The error was not corrected until well into the 1990s. In this historical account, the vast literature that sprang up during the intervening 30 years has been summarized. Although admirably documenting empiric progress in clinical transplantation, its failure to explain organ allograft acceptance predestined organ recipients to lifetime immunosuppression and precluded fundamental changes in the treatment policies. After it was discovered in 1992 that long-surviving organ transplant recipient had persistent microchimerism, it was possible to see the mechanistic commonality of organ and bone marrow transplantation. A clarifying central principle of immunology could then be synthesized with which to guide efforts to induce tolerance systematically to human tissues and perhaps ultimately to xenografts

    History of clinical transplantation

    Get PDF
    How transplantation came to be a clinical discipline can be pieced together by perusing two volumes of reminiscences collected by Paul I. Terasaki in 1991-1992 from many of the persons who were directly involved. One volume was devoted to the discovery of the major histocompatibility complex (MHC), with particular reference to the human leukocyte antigens (HLAs) that are widely used today for tissue matching.1 The other focused on milestones in the development of clinical transplantation.2 All the contributions described in both volumes can be traced back in one way or other to the demonstration in the mid-1940s by Peter Brian Medawar that the rejection of allografts is an immunological phenomenon.3,4 © 2008 Springer New York

    Patient-Reported Outcomes and Socioeconomic Status as Predictors of Clinical Outcomes after Hematopoietic Stem Cell Transplantation: A Study from the Blood and Marrow Transplant Clinical Trials Network 0902 Trial

    Get PDF
    This secondary analysis of a large, multi-center Blood and Marrow Transplant Clinical Trials Network (BMT CTN) randomized trial assessed whether patient-reported outcomes (PROs) and socioeconomic status (SES) before hematopoietic stem cell transplantation (HCT) are associated with each other and predictive of clinical outcomes including time to hematopoietic recovery, acute graft-versus-host disease, hospitalization days, and overall survival (OS) among 646 allogeneic and autologous HCT recipients. Pre-transplant Cancer and Treatment Distress (CTXD), Pittsburgh Sleep Quality Index (PSQI), and mental and physical component scores (MCS and PCS) of the SF-36 were correlated with each other and with SES variables. PROs and SES variables were further evaluated as predictors of clinical outcomes, with the PSQI and CTXD evaluated as OS predictors (p<.01 considered significant given multiple testing). Lower attained education was associated with increased distress (p=.002); lower income was related to worse physical functioning (p=.005) and increased distress (p=.008); lack of employment pre-transplant was associated with worse physical functioning (p<.01); unmarried status was associated with worse sleep (p=.003). In this large heterogeneous cohort of HCT recipients, while PROs and SES variables were correlated at baseline, they were not associated with any clinical outcomes. Future research should focus on HCT recipients at greater psychosocial disadvantage

    Common, low-frequency, rare, and ultra-rare coding variants contribute to COVID-19 severity

    Get PDF
    The combined impact of common and rare exonic variants in COVID-19 host genetics is currently insufficiently understood. Here, common and rare variants from whole-exome sequencing data of about 4000 SARS-CoV-2-positive individuals were used to define an interpretable machine-learning model for predicting COVID-19 severity. First, variants were converted into separate sets of Boolean features, depending on the absence or the presence of variants in each gene. An ensemble of LASSO logistic regression models was used to identify the most informative Boolean features with respect to the genetic bases of severity. The Boolean features selected by these logistic models were combined into an Integrated PolyGenic Score that offers a synthetic and interpretable index for describing the contribution of host genetics in COVID-19 severity, as demonstrated through testing in several independent cohorts. Selected features belong to ultra-rare, rare, low-frequency, and common variants, including those in linkage disequilibrium with known GWAS loci. Noteworthily, around one quarter of the selected genes are sex-specific. Pathway analysis of the selected genes associated with COVID-19 severity reflected the multi-organ nature of the disease. The proposed model might provide useful information for developing diagnostics and therapeutics, while also being able to guide bedside disease management. © 2021, The Author(s)

    A History of Clinical Transplantation

    Get PDF

    Discounted cash flow analysis for real estate: Identifying best practice: A dissertation submitted in partial fulfilment of the requirements for the degree of Master of Property Studies at Lincoln University

    No full text
    The Valuation of institutional grade real estate using discounted cash flow analysis has become increasing popular during the past fifteen years. The sophistication has increased, aided by computer technology and the development of spreadsheet applications. The sophistication of discounted cash flow models, which derive exact conclusions, can give a perception of precision which is unwarranted. The concern is that the precision is only implied. This research identifies the three key components of the discounted cash flow framework, which drive the conclusions, and uses four resource areas to determine how best these key components can be derived for maximum conclusion reliability and supportability

    A survey of recent research to support remote neonatal intensive care via mobile devices

    No full text
    Premature and ill term babies born in metropolitan and regional Australia are monitored and supported by a range of medical devices within Neonatal Intensive Care Units (NICUs) or Special Care Nurseries. Information produced by these devices is not available on mobile devices and require that a Neonatologist be in a hospital in order to view this data. This paper presents a survey of recent research to support streaming medical data from a NICU to a mobile computing device for remote intensive care in near real-time utilizing standard residential-grade broadband infrastructure. A key benefit of this research is that the functional requirements of such a system are used to drive the assessment of recent research as it relates to these requirements
    corecore