2,537 research outputs found

    Recently identified forms of epidermolysis bullosa

    Get PDF
    Epidermolysis bullosa (EB) comprises a collection of clinically diverse inherited blistering diseases that affect the skin and, in some subtypes, mucous membranes and other organs. Currently classified into four main subtypes (EB simplex, junctional EB, dystrophic EB, and Kindler syndrome, mainly based on the level of skin cleavage), the spectrum of EB extends to more than 30 clinical subtypes with pathogenic mutations in at least 18 distinct genes. This review focuses on three recent additions to variants of EB: all are autosomal recessive, and result from mutations in either DST-e (coding for epidermal dystonin, also known as the 230 kDa bullous pemphigoid antigen, BP230), EXPH5 (coding for exophilin-5, also known as Slac2-b), or ITGA3 (coding for the integrin alpha-3 subunit). Each of these new forms of EB is reviewed with respect to the initial gene discovery, clinical features, the current mutation database, and skin pathology. Awareness of these recently described forms of EB is helpful in the clinical evaluation of patients with EB and in defining genotype-phenotype correlation for inherited blistering skin diseases

    Seasonal Distributions and Movements of Longnose Gar (Lepisosteus osseus) within the York River System, Virginia

    Get PDF
    The seasonal movements of Lepisosteus osseus (Longnose Gar) are largely unknown. The goal of this project was to characterize spawning movements and seasonal distributions by using acoustic tagging methods and examining historical catch records from a trawl survey. This is the first time that movements have been studied for an estuarine population of Longnose Gar. Two individuals moved greater minimum distances (69 and 74 km) than found in the only other report on movement in this species. Spawning-ground residency time, collected from two tagged Longnose Gar, was approximately one month, and tidal periodicity was observed for one of the two fish. Data from a fisheries independent trawl survey were used to examine seasonal catch distributions in Longnose Gar and represents the first report of winter distributions for this species. Winter locations occurred both alongshore and mid-channel, and the distributions were similar to those in the summer and fal

    A tandem duplication within the fibrillin 1 gene is associated with the mouse tight skin mutation.

    Get PDF
    Mice carrying the Tight skin (Tsk) mutation have thickened skin and visceral fibrosis resulting from an accumulation of extracellular matrix molecules. These and other connective tissue abnormalities have made Tskl + mice models for scleroderma, hereditary emphysema, and myocardial hypertrophy. Previously we localized Tsk to mouse chromosome 2 in a region syntenic with human chromosome 15. The microfibrillar glycoprotein gene, fibrillin 1 (FBN1), on human chromosome 15q, provided a candidate for the Tsk mutation. We now demonstrate that the Tsk chromosome harbors a 30- to 40-kb genomic duplication within the Fbn1 gene that results in a larger than normal in-frame Fbn1 transcript. These findings provide hypotheses to explain some of the phenotypic characteristics of Tskl + mice and the lethality of Tsk/Tsk embryos

    The three-body problem of therapy with induced pluripotent stem cells

    Get PDF
    Regenerative medicine has a three-body problem: alignment of the dynamics of the genome, stem cell and patient. Focusing on the rare inherited fragile skin disorder epidermolysis bullosa, three recent innovative studies have used induced pluripotent stem cells and gene correction, revertant mosaicism or genome editing to advance the prospects of better cell-based therapeutics to restore skin structure and function for epidermolysis bullosa and potentially other inherited diseases

    Nanomedicine Approaches to Negotiate Local Biobarriers for Topical Drug Delivery

    Get PDF
    AbstractTopical treatments have been widely adopted to address a broad range of conditions across multiple sites thanks to their convenience, versatility, and effectiveness. While bypassing systemic biobarriers and avoiding systemic side effects by delivering directly to the target tissue, topical treatments still face significant local biobarriers that limit their efficacy. The toolset available for nanodelivery systems and their inherent multifunctionality can contribute to simultaneously address otherwise intractable challenges related to barrier function evasion, drug solubility, bioavailability, pharmacokinetics, smart and sustained release, quantitative co‐delivery, and local targeting which are key to successful topical treatments. This review summarizes the outstanding challenges associated with the topical treatments of key diseases of the skin, mucosae, eyes, and ears, and highlights how nanodelivery systems are being developed to address them effectively

    Identification and characterisation of enteroaggregative Escherichia coli subtypes associated with human disease

    Get PDF
    Enteroaggregative E. coli (EAEC) are a major cause of diarrhoea worldwide. Due to their heterogeneity and carriage in healthy individuals, identification of diagnostic virulence markers for pathogenic strains has been difficult. In this study, we have determined phenotypic and genotypic differences between EAEC strains of sequence types (STs) epidemiologically associated with asymptomatic carriage (ST31) and diarrhoeal disease (ST40). ST40 strains demonstrated significantly enhanced intestinal adherence, biofilm formation, and pro-inflammatory interleukin-8 secretion compared with ST31 isolates. This was independent of whether strains were derived from diarrhoea patients or healthy controls. Whole genome sequencing revealed differences in putative virulence genes encoding aggregative adherence fimbriae, E. coli common pilus, flagellin and EAEC heat-stable enterotoxin 1. Our results indicate that ST40 strains have a higher intrinsic potential of human pathogenesis due to a specific combination of virulence-related factors which promote host cell colonization and inflammation. These findings may contribute to the development of genotypic and/or phenotypic markers for EAEC strains of high virulence

    Amlexanox Enhances Premature Termination Codon Read-Through in COL7A1 and Expression of Full Length Type VII Collagen: Potential Therapy for Recessive Dystrophic Epidermolysis Bullosa.

    Get PDF
    Recessive dystrophic epidermolysis bullosa (RDEB) is a rare monogenic blistering disorder caused by the lack of functional type VII collagen, leading to skin fragility and subsequent trauma-induced separation of the epidermis from the underlying dermis. A total of 46% of patients with RDEB harbor at least one premature termination codon (PTC) mutation in COL7A1, and previous studies have shown that aminoglycosides are able to overcome RDEB PTC mutations by inducing read-through and incorporation of an amino acid at the PTC site. However, aminoglycoside toxicity will likely prevent widespread clinical application. Here the FDA-approved drug amlexanox was tested for its ability to read-through PTC mutations in cells derived from patients with RDEB. Eight of 12 different PTC alleles responded to treatment and produced full length protein, in some cases more than 50% relative to normal controls. Read-through type VII collagen was readily detectable in cell culture media and also localized to the dermal-epidermal junction in organotypic skin culture. Amlexanox increased COL7A1 transcript and the phosphorylation of UPF-1, an RNA helicase associated with nonsense-mediated mRNA decay, suggesting that amlexanox inhibits nonsense-mediated mRNA decay in cells from patients with RDEB that respond to read-through treatment. This preclinical study demonstrates the potential of repurposing amlexanox for the treatment of patients with RDEB harboring PTC mutation in COL7A1

    Ichthyosis Prematurity Syndrome:From Fetus to Adulthood

    Get PDF
    corecore