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Abstract

Polyphosphate is a ubiquitous linear homopolymer of phosphate residues linked by high-energy bonds similar to those
found in ATP. It has been associated with many processes including pathogenicity, DNA uptake and multiple stress
responses across all domains. Bacteria have also been shown to use polyphosphate as a way to store phosphate when
transferred from phosphate-limited to phosphate-rich media – a process exploited in wastewater treatment and other
environmental contaminant remediation. Despite this, there has, to date, been little research into the role of polyphosphate
in the survival of marine bacterioplankton in oligotrophic environments. The three main proteins involved in polyphosphate
metabolism, Ppk1, Ppk2 and Ppx are multi-domain and have differential inter-domain and inter-gene conservation, making
unbiased analysis of relative abundance in metagenomic datasets difficult. This paper describes the development of a novel
Isofunctional Homolog Annotation Tool (IHAT) to detect homologs of genes with a broad range of conservation without
bias of traditional expect-value cutoffs. IHAT analysis of the Global Ocean Sampling (GOS) dataset revealed that genes
associated with polyphosphate metabolism are more abundant in environments where available phosphate is limited,
suggesting an important role for polyphosphate metabolism in marine oligotrophs.
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Introduction

Phosphate is a critical nutrient for the growth and function of

cellular life, used in creation of phospholipids, nucleic acids and

powering metabolism via adenosine triphosphate (ATP). The

importance of phosphate in all metabolic pathways is such that it is

believed to be the ultimate limiting nutrient for marine primary

productivity in surface waters [1,2]. Recently, there has been

significant focus on the potential of marine bacterioplankton to

utilize dissolved organic phosphates (DOP), present in concentra-

tions dwarfing those of inorganic phosphates [3]. It is believed that

DOP utilization could alleviate phosphate-limitation via alkaline

phosphatase cleavage of phosphoesters (C-O-P bonds) [4–7] and

via cleavage of phosphonates (C-P bonds) [8211]. To date,

however, there has been little research into the role of polypho-

sphate metabolism in marine bacterioplankton. Polyphosphate is a

linear homopolymer of phosphate residues linked together by

high-energy phosphoanhydride bonds, similar to those found in

adenosine triphosphate (ATP). It is one of the most widely

distributed macromolecules and has been found in all forms of life

in all three domains [12], accounting for up to 10220% of the dry

weight of a cell in certain bacteria [13]. Synthesis proceeds via the

polymerization of the terminal phosphate of ATP, catalyzed by

polyphosphate kinase (Ppk1)[12]. Polyphosphate has been identi-

fied as important in a number of metabolic pathways including Pi

storage under nutrient limitation, controlling viral burst size,

horizontal gene transfer and regulation of pathogenicity [14].

Furthermore, its potential for biotechnological exploitation as an

ATP substitute [15] and in remediation of environmental

contaminants [16218] highlight it as a good candidate for

bioengineering.

Under nutrient limitation, polyphosphate metabolism serves

three main functions in bacteria. Firstly, polyphosphate acts as a

regulator of the stringent response by controlling levels of sigma

factors and through binding to RNA polymerase, inhibiting

transcription of genes involved in exponential growth [19]. Upon

return to a nutrient rich environment, polyphosphate is degraded,

re-enabling expression. Polyphosphate can also act as a storage

mechanism for phosphate via a mechanism known as ‘polypho-

sphate overplus’ [20]. When shifted from phosphate-limited to

phosphate-rich media certain bacterial strains increase their

internal polyphosphate concentrations by as much as 150-fold

[21]. Given that polyphosphate can act as a direct substitute for

ATP for many kinases [12], the overplus mechanism can massively

increase the energy stores of the cell. In oligotrophic environments,

where nutrient availability is sporadic, the ability to rapidly

accumulate polyphosphate for survival of Pi-limitation would be

favorable. Accumulated polyphosphate can either be degraded to

ATP via the reverse reaction of Ppk1, or released as inorganic

phosphate (Pi) via an exopolyphosphatase (Ppx) encoded by a gene
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that often neighbors ppk1 in an operon [22,23]. Polyphosphate

may also be degraded to generate GTP, important in the stringent

response, via the phosphorylation of GDP, catalyzed by polypho-

sphate kinase 2 (Ppk2). It is also possible that accumulation of Pi as

polyphosphate may postpone cellular saturation of free Pi by

acting as a Pi sink. This would kinetically drive the uptake of Pi by

the high-affinity transporter PstS, which has been shown to

dominate the metaproteome in Pi-limited systems [24]. A

secondary benefit of such a system would be the osmotically

neutral storage of cations, associated with the electron-dense

polyphosphate polymer. Consumption of the polyphosphate chain

would release protonated metal chelates, generating membrane

potential that could be utilized in both ATP synthesis [25] and

substrate uptake [26]. The aim of this research was to examine the

prevalence of polyphosphate metabolism genes in the metage-

nomic samples taken as part of the Global Ocean Sampling

Expedition.

The Global Ocean Sampling Expedition (GOS) represents the

largest marine metagenomic dataset to date, comprising 6.3 billion

basepairs of genomic information across 44 sites in its first phase

alone [27]. Consequently, it has been pivotal in attempts to

improve understanding of microbial functional metabolism

through bioinformatic analysis [4,6,10,27–29]. Such studies have

often used local alignment algorithms such as BLAST [30] to

identify gene fragments sharing isofunctional homology to a

known reference sequence, paired with selective expect-value

cutoffs and/or reciprocal best-hit protocols to exclude hits deemed

too dissimilar to have a statistical likelihood of homology.

However, this approach is not without pitfalls. When comparing

relative abundance of one gene to another, either a secondary

functional gene [4], or a single-copy marker gene for estimations of

per-cell abundance [6], it cannot be assumed that the same expect-

value cutoff will equally affect the inclusion or exclusion of putative

homologs for different genes. Effect of expect-value cutoff is a

function of gene conservation, conserved domain number and

gene length. This is demonstrated in Figure 1, which shows that

the number of single-copy marker gene homologs (recA, gyrB and

rpoB) identified by BLAST when compared against a re-sampled

GOS dataset decreases more slowly with a decreasing expect-value

cutoff compared with less well-conserved genes. Consequently, the

choice of expect-value cutoff will affect any downstream analysis of

relative gene abundance. To circumvent this bias, a more inclusive

expect-value is often combined with a filtering of putative

homologs by crosschecking against a second protein database,

known as a reciprocal-BLAST. The National Center for

Biotechnology Information (NCBI) non-redundant CDS transla-

tion database is often used for this task. A putative homolog from

the first search is classed as a homolog if one of the closest matches

in the second search matches the annotation of the query sequence

[31,32]. However, as environmental genomic studies continue to

increase exponentially the number of sequences from either

putatively annotated or hypothetical proteins from uncultured

bacteria in such databases will also increase dramatically. This

makes it more difficult to successfully crosscheck hits using a

reciprocal BLAST as the number of unknown matches returned as

top hits increases. This is a particular problem for multi-domain

proteins where a genomic fragment may cross two domains and

thus be rejected in the crosscheck if part of the fragment has a

better match to a shared ancestral conserved domain on a non-

homologous protein.

Multi-domain proteins can also be problematic when using

Position-Specific Score Matrices (PSSM) in probabilistic inference

analysis as used in HMMER3 [33]. In traditional BLAST analysis

of two fragments, a non-matching sequence from a poorly

conserved region is penalized as heavily as a non-matching

sequence from a highly conserved region. Both HMMER3 and

PSI-BLAST [34] overcome this weakness by weighting mismatch

penalties on the likelihood of a match for a given region (i.e. how

conserved a particular region of the gene is). These methods are

often used in conjunction with a Hidden Markov Model (HMM)

for a particular conserved domain, available in the PFAM

database [35]. However, when searching for homologs of a

multi-domain protein where one of the domains is highly

ubiquitous (e.g. an ATP-binding cassette), a large number of true

homologs (in the sense that the domains share a common ancestor)

will be returned which are not necessarily isofunctional (the terms

‘ortholog’ and ‘paralog’ have been deliberately avoided in this

manuscript due to the potential confusion arising from these terms

as highlighted by Jensen [36]). Thus, to identify isofunctionally

homologous sequences, a reciprocal BLAST step would be

required to filter out any hits that shared one or more domains

with the query but which also contained non-matching domains,

suggesting a different function.

Given that the three genes involved in polyphosphate

metabolism, ppk1, ppk2 and ppx are all multi-domain and contain

ubiquitous ATP binding sites coupled with regions of variable

conservation [37,38], it was felt that a new pipeline was required

to successfully annotate isofunctional homologs of these genes from

a metagenomic dataset. The requirements of the pipeline were

four-fold: (i) The pipeline had to be free from bias resulting from

arbitrary expect-value cutoffs, as ppx is more poorly conserved

than ppk1 and ppk2 (Figure 1). (ii) The pipeline was required to

consistently annotate isofunctional homologs of these genes across

multiple marine metagenomic datasets, using unassembled reads

from both Sanger (,1000 basepair (bp)) and GS-FLX (,350 bp),

so that their abundances could be accurately compared. (iii) It had

to implement a PSSM-based homology search using PSI-BLAST.

(iv) Annotated putative homologs required a reciprocal homology

check against a well-curated database free from hypothetical

proteins of uncultured species. This paper describes a novel

Isofunctional Homolog Annotation Tool (IHAT) developed to

meet these criteria. In an evaluation against other homology

search methods, IHAT performed better at annotating isofunc-

tional homologs and avoiding heterofunctional homologs than

BLAST or HMMER3 and did not require prior translation of

nucleotide sequences into putative Open Reading Frames (ORFs).

Analysis of the GOS dataset using IHAT revealed a strong

correlation between ppk1 and ppx abundance and estimated

phosphate concentrations. ppk2 abundance did not correlate with

Pi concentration, nitrate/nitrite concentration, temperature or

salinity. These results suggest that polyphosphate synthesis and

degradation may confer a selective advantage to oligotrophs in Pi-

limited environments. Furthermore, the genes involved in organic

and inorganic phosphate sensing, uptake and storage used in this

study serve as a model for other complex regulatory systems,

suggesting that IHAT has broad applicability to other metabolic

systems.

Results

IHAT analysis
IHAT performs a PSI-BLAST search using a checkfile derived

from a custom HMM and consensus sequence created from all

members associated with a particular Clustered Orthologous

Group (COG) [39] within the STRING database [40] (Figure 2).

The STRING database was chosen as it contains detailed protein-

protein interactions, enabling the identification and removal of

fused genes from the model alignment to improve HMM quality.

Polyphosphate Role in Marine Bacterioplankton
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Putative homologs from this stage were verified with a reciprocal

BLAST against the STRING database to check that their best-hit

was also a member of the same COG. Prior to analysis of the GOS

and WEC datasets, the efficacy of IHAT was tested against

homolog identification using TBLASTN and HMMER3 for 11

genes chosen to cover a broad range of conservation and lengths,

with known isofunctional and heterofunctional homology. For

these tests, artificial datasets were created using MetaSim [41] by

random sampling of the genome of Candidatus. ‘‘Pelagibacter

ubique’’ HTCC7211 into 1000 bp and 350 bp fragments at 20-

fold coverage.

The comparative number of homologs returned from the

1000 bp and 350 bp Can. ‘‘P. ubique’’ HTCC7211 artificial

datasets for each of the genes listed in Table 1 is shown in

Figure 3. The red dotted line represents the total number of

fragments sampled within the start and end locus of the gene on

the Can. ‘‘P. ubique’’ HTCC7211 genome. IHAT successfully

identified all fragments from each gene, with no false positives in

the 1000 bp or 350 bp datasets, displaying a greater sensitivity to

homologs than an expect-value cutoff of 10235, used in previous

similar studies [4], and similar sensitivity as a cutoff of 1025.

TBLASTN analysis using a cutoff of 1025 resulted in a high

number of false positives identified for pstA, pstB, and creC. The

lack of known homologs to ppk2 and creC in the Can. ‘‘P. ubique’’

HTCC7211 genome was correctly identified by IHAT and

HMMER3, with TBLASTN identifying 31 creC homologs at

1025. Reciprocal BLASTX of these false positives against the

non-redundant protein database at NCBI had a best-hit of the

chvG gene on Can. ‘‘P. ubique’’ HTCC1062, a pH-regulated two-

component sensor histidine kinase [42]. Similarly, HMMER3

analysis successfully identified expected homologs for all 11

genes, but also a large number of false positives in 6 out of 11

genes in both 1000 bp and 350 bp datasets. HMMER3

identified 918 pstB homologs in the 1000 bp dataset, of which

853 (,93%) matched the top three conserved domains: PF00005

(an ABC-transporter conserved domain), PF02463 (a superfamily

with ATP binding domains at the N and C termini) and

PF03193 (a family of unknown function that is a member of P-

loop containing NTP hydrolases) in a reciprocal hmmsearch

using the PFAM-A HMM as a query. Given the length of pstB is

755 bp (Table 1), it is not possible to have 1000 bp fragments

which fall between the start and end loci of this gene. 203 of the

214 homologs (,95%) identified by HMMER3 as putative pstC

in the 1000 bp dataset matched PF00528, a conserved region

between two transmembrane domains in periplasmic substrate

binding proteins. TBLASTN analysis on highly conserved genes

returned the expected number of homologs with no false

positives at all tested expect-value cutoffs. Surprisingly, 51 of

the recA homologs and 73 of the rpoB homologs identified by

HMMER3 in the 1000 bp dataset were fragments sampled from

outside the locus of these genes. 49 of these recA homologs

matched PF05729, an NTPase domain, while 68 of the 73 rpoB

homologs matched PF04998, domain 5 of an RNA polymerase

subunit encoded by rpoC and/or PF00623, domain 2 of a b’

subunit of RNA polymerase [43] in a reciprocal hmmsearch

using the PFAM-A HMM as a query.

Figure 1. Effect of different expect-value cutoffs on the number of identified homologs in a subsampled nucleotide database from
the GOS expedition, using amino acid sequences from Pseudomonas aeruginosa PAO1 as a query in a TBLASTN local alignment
search. ppk1, ppk2 and ppx are polyphosphate metabolism genes comprising of regions of both high and low conservation. recA, gyrB, and rpoB are
single copy marker genes and tend to be highly conserved.
doi:10.1371/journal.pone.0016499.g001
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Polyphosphate Gene Abundance in the GOS dataset
IHAT was used to identify isofunctional homologs of three

polyphosphate metabolism genes (ppk1, ppk2, ppx), the high-affinity

phosphate transporter, pstS, the alkaline phosphatase genes phoA

and phoX, and the 35 single-copy marker genes used by Raes and

colleagues for calculation of effective genome size [44], across 38

GOS samples [27]. Median annual phosphate values for each

GOS site were estimated using the World Ocean Database

resource (see Materials and Methods). GOS samples were included

in the analysis if (a) estimation of median phosphate values from

the World Ocean Database could be derived from a minimum of

three samples; (b) the metagenomic dataset consisted of at least

46,052 sequences; (c) the dataset was derived from the prokaryotic

fraction of the filtration (0.22–0.8 mm). Sample GS033, from a

hypersaline lagoon, and sample GS020, from a freshwater lake,

were removed from analysis, as was sample GS025 (reef sample,

different filter sizes). These samples had been previously shown to

be outliers in a similarity comparison of GOS Metagenomes [45].

Samples from the initial GOS pilot study (GS000a-d) were also

excluded due to an unusually high abundance of fragments

identified as originating from Burkholderia sp. [46]. The abundance

of a gene in a particular dataset was converted into the frequency

an isofunctional homolog was found per sequence via Effective

Sequence Count (ESC) normalization [47]. This was to remove

bias from differential average genome sizes between sampled

communities in GOS samples. Sampling frequencies for each gene

were then modeled as a function of estimated phosphate

concentration using the glm function in R [48]. Homolog

abundance data was overdispersed, with dispersions ranging from

1.96 for ppk2 to 6.55 for pstS. Therefore, use of a quasipoisson

model was appropriate [49]. The results of this analysis can be

seen in Figure 4. The frequency of sampling isofunctional

homologs of ppk1, ppx and pstS showed a significant difference from

the null model (p-value = 0.001, 9.67461025 and 3.0861026

respectively (d.f. = 37), calculated using a Fisher test analysis of

deviance as is appropriate for models based on quasi-likelihood

Figure 2. Diagrammatic representation of homolog annotation in IHAT. A worker thread is created for each combination of gene/database
to be analyzed. The three colored functional blocks represent each individual stage of the process. For each gene, generation of query information
only occurs once. Output from this block is reused for all subsequent homolog searches.
doi:10.1371/journal.pone.0016499.g002
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[50]). There was a clear relationship with average annual Pi

concentrations in the GOS data. As expected, 33 of the 35 single-

copy marker genes showed no correlation with Pi concentration,

with the exceptions being hisS and leuS (p-values of 0.02 and 0.03

respectively, deviance F-test, d.f. = 37). ppk2 showed no significant

correlation between sampling frequency and Pi concentration (p-

value = 0.290, deviance F-test, d.f. = 37), N concentration (p-

value = 0.830, deviance F-test, d.f. = 32), temperature (p-val-

ue = 0.431, deviance F-test, d.f. = 37), salinity (p-value = 0.896,

deviance F-test, d.f. = 37), silicate concentration (p-value = 0.896,

deviance F-test, d.f. = 37) or a model combining all five variables

and their interactions (p-value = 0.316, deviance F-test, d.f. = 32).

Of the two alkaline phosphatase genes, phoX had a significant

relationship with Pi concentration (p-value = 0.003, deviance F-

test, d.f. = 37), but phoA did not (p-value = 0.313, deviance F-test,

d.f. = 37).

To investigate how abundances of polyphosphate genes,

alkaline phosphatases and pstS changed between GOS samples,

the total number of isofunctional homologs identified by IHAT for

each gene at each site was normalized by effective sequence

counts. A Bray-Curtis distance-matrix was then created and

plotted as a Non-metric multidimensional scaling (NMDS) plot

using the metaMDS function in the R vegan package [51]. Initial

analysis included the hypersaline site, GS033, the freshwater site,

GS020 and GS000a from the pilot study. Figure S1 shows that

these sites had very different profiles compared to other marine

sites, forming a distinct cluster in a dendrogram of group-average

hierarchical clustering from a Bray-Curtis distance matrix of

phosphate gene abundance normalized to effective sequence

counts. SIMPROF testing of this dendrogram in PRIMER v6 [52]

revealed that GS000a and GS033 were not significantly different

(91.7% similarity, 5% significance level, 999 permutations).

Consequently, they were removed from subsequent analysis.

NMDS plots of the remaining sites overlaid with environmental

variables revealed a correlation between Pi concentrations

estimated from the World Oceans Database (WOD) and

ordination of sites along the primary axis (Figure 5). Environ-

mental variables were fitted as smooth surfaces created using a

generalized additive model via the ordisurf function in the R

vegan package. Surfaces with a gradient parallel and equally

spaced to the vector of the environmental variable represent a

linear relationship between ordination and the environmental

variable (represented by a bubbleplot). Figure 5 also shows a

linear response in ordination for estimated nitrate/nitrite concen-

trations, although 11 sites were removed from the analysis due to a

lack of measurements in the WOD (GS012, GS017, GS031,

GS032, GS051, GS114, GS115, GS116, GS117a, GS120,

GS148). No such linear response was found for temperature or

absolute latitude. Principal Components Analysis was performed

using the rda function in the R vegan package. Gene sampling

frequencies were scaled by unit variance to avoid domination by

genes with high abundance and high variance. The PCA plot was

overlaid with a fitted smooth surface of estimated Pi concentrations

(Figure 6). Inertia was equated to correlation, with the primary

principal component (PC1) axis explaining 45% of the total

correlation and the secondary principal axis (PC2) explaining 19%

of the total correlation. Unsurprisingly, there was a near linear

response between pstS sampling frequency and estimated Pi

concentration. Site ordination across PC1 was largely driven by

pstS, ppk1, ppx and to a lesser extent, phoX. phoA and ppk2 had little

effect on ordination across PC1. Interestingly, phoA sampling

frequency had a large effect on ordination across PC2, which

showed a linear relationship with temperature estimated from

WOD and latitude in environmental variable surface plots (data

not shown).

For ppk1, ppk2 and ppx, species composition of isofunctional

homologs identified as reciprocal best-hit in STRING across the

GOS samples was analyzed using SIMPROF. Between sites there

was a paucity of shared species, known to affect Bray-Curtis

distance measures [53]. Therefore species abundances between

sites were compared using Manhattan distance over log(X+1)

transformed data. SIMPROF analysis of ppk1 species composition

showed GS012, GS019, GS015, GS032 and GS013 were single-

member clusters, while GS016 and GS017 also formed a separate

cluster (5% significance level, 999 permutations) For ppx, GS015

and GS019 formed a cluster as did GS017. All other samples were

clustered together. ppk2 formed two significantly different clusters,

with GS001c separated from all other samples, which were

clustered together (Figure S2). ppk1 isofunctional homologs were

identified from a wide range of species in STRING, with the five

most abundant species (Gramella forsetii KT0803, Prochlorococcus

marinus MIT9312, Flavobacterium johnsoniae ATCC17061, Prochloro-

Table 1. Genes used to test the efficacy of IHAT in comparison to TBLASTN alignment analysis and HMMER probabilistic inference
analysis.

Gene Name Locus tag Product Name Gene Length (bp)

ppk1 PB7211_113 Polyphosphate kinase 1 2159

ppk2 - Polyphosphate kinase 2 -*

ppx PB7211_261 Exopolyphosphatase 1508

pstS PB7211_1190 Phosphate ABC transporter, periplasmic phosphate-binding protein 1034

pstC PB7211_733 ABC transporter 1385

pstA PB7211_586 Phosphate ABC transporter, permease protein 1271

pstB PB7211_412 Phosphate ABC transporter, ATP-binding protein 755

creC - Sensor kinase -*

recA PB7211_1119 DNA Repair protein 1148

gyrB PB7211_801 DNA gyrase, B subunit 2060

rpoB PB7211_738 DNA-directed RNA polymerase, beta subunit 4085

Gene length refers to the nucleotide length of these genes in the Can. ‘‘P. ubique’’ HTCC7211 genome.
*ppk2 and creC have no known homologs in the Can. ‘‘P. ubique’’ HTCC7211 genome.
doi:10.1371/journal.pone.0016499.t001
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coccus marinus AS9601 and Mesorhizobium sp. BNC1) representing

171 of 485 ppk1 homologs (,35%) across all GOS samples. ppx

was also broadly represented, with the five most abundant species

(Prochlorococcus marinus MIT9301, Clostridium difficile 630, Flav.

psychrophilum ATCC 49511, Prochlorococcus marinus AS9601, Rugeria

sp. TM1040) representing 158 of 534 (29.6%) homologs.

Conversely, ppk2 homologs were dominated by two species in

STRING: Sulfurovum sp. NBC37-1 (166 hits, 33.9%) and Ruegeria

pomeroyi (55 hits, 11.8%). The lack of polyphosphate gene

homologs from the ubiquitous Can. ‘‘P. ubique’’ HTCC7211 in

the GOS samples is due the absence of its genome in version 8.2 of

the STRING database.

Discussion

Evaluation of IHAT in comparison to analysis using TBLASTN

and HMMER3 against an artificial dataset of randomly sampled

fragments from Can. ‘‘P. ubique’’ HTCC7211 revealed that

overall, IHAT annotation is highly accurate, successfully identi-

fying all fragments sampled from a particular gene, with no ‘false

positives’ from other genes in the genome which may share

ancestral homologous conserved domains. The use of Can. ‘‘P.

ubique’’ HTCC7211 as a source for an artificial dataset had

several advantages. Firstly, SAR11 genomes are highly stream-

lined as a result of nutrient-limited selective pressure, with few

multi-copy genes [54]. Therefore, genomic fragments assigned to a

particular gene by IHAT are unlikely to come from an

uncharacterized isofunctional homolog, outside the loci of the

known gene. The small genome size of Can. ‘‘P. ubique’’

HTCC7211 (,1.46 Mbp) also allows high coverage of the

genome with a relatively small number of fragments, reducing

computational costs. The low guanine-cytosine (GC) content of

SAR11 (29% in Can. ‘‘P. ubique’’ HTCC7211) results in skewed

nucleotide coding sequences for genes (e.g. Can. ‘‘P. ubique’’

HTCC7211 pstS has a best-hit in nr to pstS of Can. ‘‘P. ubique’’

HTCC1062 with an expect-score of 16102102, dropping to

2610224 for the second best hit to pstS in Arcobacter butzleri

RM4018). SAR11 genes therefore represent an extreme of

nucleotide coding for a given isofunctional homolog and

consequently the best test for the effectiveness of a new annotation

tool. Finally, the genome of Can. ‘‘P. ubique’’ HTCC7211 was not

included in STRING v 8.2, so any bias resulting from exact

matches to a particular gene in the database were avoided. The

results of this evaluation, and subsequent analysis of the GOS

samples showed that the four criteria for isofunctional homolog

annotation were met by IHAT.

The retrieval of all fragments for each gene with no false

positives from the artificial dataset, coupled with the lack of

correlation between 33 of 35 single copy marker gene abundance,

and estimated phosphate concentration in GOS samples suggests

that IHAT worked equally well on highly conserved and less

conserved genes. The significant correlation of hisS and leuS with

phosphate concentration was surprising as normalization of data

using effective sequence counts, derived from effective genome

size, which is in turn based off single-copy marker gene

abundance, should effectively remove any correlation between

single copy marker gene abundance and environmental variables.

However, their p-values were only just below a significance cutoff

of 0.05 (0.02 and 0.03 respectively). Conversely, the recA

generalized linear model showed little difference to the null model

(p-value = 0.93), whereas that of pstS showed a highly significant

difference (p-value = 3.0861026) from the null model (Figure 4).

Therefore, the significant correlation of hisS and leuS may have

been a result of random chance.

Identification of homologs by IHAT was equally successful across

both 1000 bp and 350 bp artificial datasets, suggesting that it is

unaffected by reduced sequence size and thus suitable for analysis of

both Sanger and 454 GS-FLX pyrosequenced reads. Evaluation of

IHAT also revealed two advantages over HMMER3 for calculating

the abundance of isofunctional homologs in metagenomic datasets.

HMMER3 was highly sensitive to distant homology between

conserved domains and thus returned many statistically significant

homologs when searching for genes involved in nutrient transport,

which tended to contain a large number of ATP binding domains,

P-loops and other ubiquitous domains. Indeed, it must be stressed

that this is the strength of HMMER3 and the retrieval of significant

matches from other genes in the artificial dataset should be classed

as a failure of its application as an annotation tool without a

reciprocal check, rather than a weakness of the software. However,

one advantage of IHAT is that it can be run against nucleotide

sequences whereas HMMER3 is currently limited to amino acid

sequences [33]. Translating nucleotide sequences into their amino

acid counterparts using tools such as orf_finder prior to

annotation suffers from insensitivity to frameshift mutations

introduced during sequencing, whereas analysis of the nucleotide

sequence directly using tools such as PSI-BLAST [34] can account

for this frameshift by introducing a penalized gap.

The use of matching COG numbers as a reciprocal check of

isofunctional homology against a database of known, fully

sequenced genomes appeared to successfully filter out hits to

genes that happened to share a conserved domain. This method

has a major advantage over reciprocal BLAST vs. a database such

as the NCBI nr/nt databases: With the current exponential

increase in sequence information from an ever-increasing range of

environments [55], the number of sequences in the nr/nt

databases associated with unknown/uncultured bacteria and their

hypothetical proteins will increase dramatically. As a result,

reciprocal best-hit tests will be less likely to return a meaningful

result as their top hit and will require an arbitrary cutoff of how

many results should be parsed before rejecting a putative homolog,

proportional to the number of unidentified sequences in the

database. In comparison, the number of COG families is believed

to be relatively limited. While the original work of Tatusov and

colleagues somewhat underestimated the upper limit of families

(1000 families vs. the .5000 families currently in the COG

database) [40], the number of families will remain vastly smaller

than the total number of non-redundant sequences. Therefore,

even as the number of sequenced genomes in STRING increases,

matching of COG family against the top hit of a reciprocal

BLAST should remain consistently stringent.

Analysis of the GOS datasets for isofunctional homologs of

polyphosphate metabolism genes revealed that ppk1 and ppx in

particular may contribute to the survival of phosphate-limitation in

Figure 3. Bar plots of annotation success using the pipeline, TBLASTN with Ps. aeruginosa PAO1 genes at 10235 and 1025 expect
cutoff, and HMMER3 against an artificial dataset created from HTCC7211 random (A) 350 bp and (B) 1000 bp fragments. For
HMMER3 analysis, the artificial dataset was translated into ORFs using orf_finder and then scanned using HMMER3 using the STRING-generated
HMMs as the query. Light blue bars represent the number of hits that were correctly annotated. Dark blue bars represent the number of correctly
annotated hits plus the number of hits to other genes. The red dotted line indicates the total number of correct hits in the dataset, equal to the
number of fragments sampled within a gene locus.
doi:10.1371/journal.pone.0016499.g003
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bacterial communities associated with oligotrophic environments.

This finding supports recent research by Orchard and colleagues

[56], which demonstrated polyphosphate accumulation in the

abundant marine cyanobacteria Trichodesmium in Pi-limited

environments. The importance of pstS in Pi-limitation survival

has been well documented in both Prochlorococcus spp. [57,58] and

SAR11 [24], with Prochlorococcus spp. increasing the copy number of

pstS once available Pi concentrations drop below 0.1 mM [58].

This dependence can clearly be seen in Figure 4, with pstS

abundance dropping rapidly once average Pi concentrations

exceed 0.2 mM. pstS abundance also showed a clear negative

correlation with the ordination of GOS sites along the primary

Figure 4. Generalized linear models of polyphosphate metabolism (A–C), high-affinity phosphate uptake (D), alkaline
phosphatases (E–F) and single-copy marker gene (G–I) abundance as a function of estimated Pi concentration in GOS samples.
Frequencies (black dots) are calculated as the number of isofunctional homologs per sequence, re-scaled to Effective Sequence Counts. Models (black
lines) were created using a quasipoisson distribution. Colored dots represent a simulation of 1000 samples with equal variance and distribution to
measured samples, shaded according to the local density at each point. Green dots a significant difference (p-value ,0.05, deviance F-test) between
the model and the null model.
doi:10.1371/journal.pone.0016499.g004
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principal component axis in Figure 6, with a near-linear

correlation to overlaid Pi concentrations. Both ppk1 and ppx also

showed strong negative correlation along this axis and results of

generalized linear models suggested a highly significant negative

correlation between their abundance and available Pi concentra-

tion. Whether ppk1 is used to store Pi as polyphosphate for

surviving periods of extreme Pi-limitation, or whether it is used to

drive transport equilibria by acting as a phosphate sink to

maximize uptake requires further elucidation through laboratory

work. However, this research indicates that the ability to

Figure 5. Non-metric Multidimensional Scaling plot of GOS sites phosphate metabolism gene abundance normalized to effective
sequence counts. 2D Stress: 0.15. (A–D) represent bubble plots of environmental variables for (A) estimated Pi concentration from World Ocean
Database (WOD); (B) estimated Nitrate/Nitrite concentration from WOD; (C) Surface temperature measured at time of sampling; (D) Absolute latitude
of sample sites (i.e. distance from equator). Red contour lines represent a smooth fitted surface of estimated Pi concentrations from the World Ocean
Database for each site, fitted using a generalized additive model using the R function ordisurf.
doi:10.1371/journal.pone.0016499.g005
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synthesize polyphosphate and then subsequently degrade it to Pi

via Ppx and/or via the reverse reaction of Ppk1 is not only

retained in genomically streamlined strains, such as all 12

currently sequenced Prochlorococcus spp. genomes and Can. ‘‘P.

ubique’’ HTCC7211 [54,59], but is also found across a range of

other species. Interestingly, the abundance of ppk2 was not

significantly correlated to average Pi concentrations, nor did it

have a significant impact on ordination of GOS sites in NMDS.

Unlike ppk1 and ppx, abundance of ppk2 was dominated by two

species, an Epsilonproteobacterium, Sulfurovum sp. NBC37-1,

associated with hydrothermal vents [60] and Ruegeria pomeroyi

DSS-3, a pelagic member of the Roseobacter clade [61]. The lack of

correlation between ppk2 abundance and any of the measured or

estimated environmental variables suggested that the factors

driving the maintenance of ppk2 in the genomes of marine

bacteria have not been identified in this study. The annotation of

ppk2 to Sulfurovum sp. NBC37-1 and ppx to Clostridium difficile 630

from marine surface water samples highlights the fact that

speciation of isofunctional homologs based on reciprocal best-hit

analysis is limited to the number of species currently available in

the STRING database. Such taxonomic assignations should

therefore be broadly interpreted alongside known community

composition from 16S rRNA studies. The importance of both ppx

and ppk2 to Ruegeria spp. (5th most abundant ppx homolog and 2nd

most abundant ppk2 homolog) is unsurprising, as members of this

genus have been classified as ubiquitous ‘opportunitrophs’, with

significantly elevated numbers of signal transduction genes and

transport/binding proteins [61], to maximize nutrient uptake

when they become available. The genome of R. pomeroyi lacks a

homolog of ppk1 but has three homologs of ppk2. One of these,

protein SPO0224, was recently shown to favor the synthesis of

polyphosphate from ATP rather than the catalysis of GDP

Figure 6. Biplot of principal component analysis of phosphate metabolism gene abundance normalized to effective sequence
counts in GOS sites, overlaid with a smooth fitted surface of estimated Pi concentrations from the World Ocean Database for each
site (blue), fitted using a generalized additive model using the R function ordisurf. Vector inertia is equal to correlation and scaled with
optimum relation to sites. Gene sampling frequency was scaled to unit variance. PC1 explained 45% of the total correlation.
doi:10.1371/journal.pone.0016499.g006
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phosphorylation using polyphosphate typically associated with

ppk2 [62]. It may be that for R. pomeroyi, this represents a specific

adaptation, perhaps via post-translational functional modification

of SPO0224, to utilize polyphosphate for maximal nutrient

uptake. Further work is required to elucidate the role of this

unusual ppk2 homolog in R. pomeroyi.

The relative importance of the alkaline phosphatase encoded by

phoX compared to phoA to ordination of GOS sites in an NMDS,

and the significant correlation between phoX abundance and Pi not

seen for phoA, confirms the findings of previous studies that

indicated phoX was more abundant in marine metagenomic

samples than phoA. PhoX is activated by the binding of Ca2+, in

contrast to PhoA, which relies on Zn2+, typically available at

subnanomolar concentrations in marine environments. [4]. phoA

abundance was strongly correlated with the secondary principal

component axis in Figure 6. This axis showed a non-linear

relationship with latitude, suggesting that phoA may be more

abundant at higher latitudes. Regulation of phoA is traditionally

assumed to be tightly controlled by Pi availability, but the lack of

correlation with Pi in this study may suggest other modes of

regulation in marine systems.

In conclusion, IHAT is a novel pipeline for the annotation of

isofunctional homologs that meets the specified criteria of

accuracy. It enables estimation of the relative abundance of single

and multi-domain homologs, free from expect-value cutoff bias, in

both Sanger and 454 GS-FLX pyrosequenced metagenomic

datasets. Reciprocal checking of the COG assignment of the

best-hit from a BLASTX query against the STRING database

provides not only an accurate way of filtering out heterofunctional

homologs which share an ancestral conserved domain, but also

yields broad taxonomic identification of the homolog for analysis

of community composition. IHAT analysis of the GOS dataset has

shown that polyphosphate metabolism via the Ppk1 and Ppx

proteins may contribute to the survival of oligotrophs under

conditions of low Pi availability. This research encourages further

study of this largely overlooked polymer in marine bacterioplank-

ton.

Materials and Methods

Investigation of the effect of expect-value cutoff for
different genes

To investigate how expect-value cutoff with TBLASTN affected

the number of identified homologs for different genes, a nucleotide

database was created by combining all GOS datasets into a single

FASTA file and then randomly subsampling to 46,052 sequences

using the daisychopper (http://www.genomics.ceh.ac.uk/

GeneSwytch/Tools.html) tool. A local alignment homology search

was then performed against this database using amino acid

sequences of ppk1, ppk2, ppx, recA, gyrB and rpoB as query sequences

for TBLASTN at expect-value cutoffs log decremented from 1025

to 102100. Sequences that returned multiple High-scoring

Sequence Pairs (HSPs) were counted as a single hit.

Estimation of nutrient values for GOS Samples
To overcome the lack of nutrient metadata associated with

GOS samples, average monthly or annual values for each sample

site have previously been extrapolated from the World Ocean

Database [6,58,63]. A similar method was used for this study. For

each GOS sample site nutrient concentrations were downloaded

from the World Ocean Database for a 1u61u longitudinal and

latitudinal square, centered on the original sample site. Measure-

ments that were extreme outliers (e.g. phosphate concentrations

.15 mM) were removed. Sites that had fewer than 3 records

remaining were dropped from the analysis (Table S1). Average

monthly values per site were not significantly different, so for each

nutrient, the annual distribution was analyzed. Such distributions

tended to be positively skewed so median rather than mean values

were calculated.

Preparation of the GOS samples for analysis
To overcome sampling bias between GOS datasets, poorly

sequenced datasets were removed (e.g. GS113: 718 reads, GS114:

9741 reads) and each remaining dataset was randomly resampled

to the size of the smallest remaining dataset (GS120 - 46,052

sequences) using the daisychopper (http://www.genomics.

ceh.ac.uk/GeneSwytch/Tools.html) tool.

Annotation of homologs using IHAT
IHAT is an application written in Python and is available for

download under the Apache License Version 2.0 (http://www.

apache.org/licenses/LICENSE-2.0) in a Subversion repository at

http://code.google.com/p/homologfinder/. An overview of the

application is shown in Figure 2. IHAT is run using two

command line arguments: ‘–geneList’ points to a file containing

the query genes and ‘–dbList’ points to a file containing the

databases to be searched. Each gene/database combination is

handled by a queue of threaded ‘worker’ objects to maximise

throughput. To search for homologs for a particular gene, IHAT

requires two pieces of information: (i) the Clustered Orthologous

Group (COG) to which the protein encoded by the gene belongs

and (ii) a hidden markov model (HMM) describing the primary

structure of the protein. For each of the genes analyzed using

IHAT, protein sequences were obtained from the National Center

for Biotechnology Information (NCBI) website using accession

numbers from publications where the encoded protein had been

biochemically characterized, rather than using those based on

predicted homology. The COG for this protein sequence was then

identified using the STRING v 8.2 database (http://string.embl.

de). Finally, the HMM for the protein was obtained using an

HMM sequence search at the TIGRFAM web resource (http://

www.jcvi.org/cms/research/projects/tigrfams/) and using the

best-hit model (either a PFAM or a TIGRFAM model). The

gene name and its associated COG and HMM name are stored in

a file in tab separated format for parsing by the application. Once

this information has been obtained, the homolog search proceeds

via three main steps:

1. Generation of query information, including a whole-gene

HMM, a consensus sequence from the STRING database and

a checkpoint file.

2. PSI-BLAST search for homologs in the metagenome using

products from (1).

3. Cross-check of homology against the STRING database using

reciprocal best-hit analysis.

Generation of query information
Due to the relatively short length of metagenomic fragments in

comparison to full gene length, a fragment may span conserved

domains that comprise a particular protein. For multi-domain

proteins, use of a PFAM HMM, which typically models a single

conserved domain of a protein, relies on sufficient coverage by

the fragment of that domain to be recognized as homologous.

Using an HMM for the full gene, rather than individual

conserved domains, allows for greater specificity in annotation

of homologs which span two conserved domains. Unlike PFAM

HMMs, TIGRFAM HMMs consist of models for full-length
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proteins [64]. However, because the best-hit model for a protein

sequence from TIGRFAM could either be a PFAM or a

TIGRFAM model, full-length protein HMMs were constructed

for each gene using protein sequences associated with a particular

COG in the STRING database so as to avoid bias of using

HMMs from different sources. For successful homolog calling

using HMMs it is imperative that the input sequences used to

construct the HMM are free from contamination by erroneously

annotated sequences. Therefore, prior to construction of the

HMM from STRING proteins, sequences assigned to a particular

COG in STRING were subjected to two checks. Firstly, any

sequences associated with multiple COGs (products of gene

fusion etc.) were rejected. Remaining sequences were verified

using hmmsearch from HMMER3 [33] using the HMM

identified by TIGRFAM as the query model. Sequences outside

of the inclusion threshold were rejected, ensuring that the

sequences to be included in the creation of the STRING HMM

matched either the full protein model (TIGRFAM HMM) or

contained a ‘signature’ conserved domain for the protein (PFAM

HMM). Filtering during this step is not limited to a specific

HMM, allowing use of custom HMMs or other HMM datasets

(e.g. FIGfams [65]) if required. Sequences that passed both

checks where then aligned using MAFFT v.6 [66], a rapid,

parallelized multiple sequence alignment program. The E-INS-I

alignment protocol was used to improve alignment accuracy

between distantly related homologs [67]. The alignment was then

used to create an HMM using HMMER3 hmmbuild, which

was in turn used to create a consensus sequence using hmmemit.

The consensus sequence is then used to create a position-specific

score matrix (PSSM) using blastpgp [34] with verified

STRING COG sequences as a target database and the ‘-C’

option to output the PSSM as a checkfile, in a process similar to

that used in the metaSHARK pipeline [68].

Performing the PSI-BLAST
Using the checkfile generated above, metagenomic databases

listed in the database file were then searched for homologs using

PSI-TBLASTN, with no specified e-value cutoff with an effective

database length set to 109. Sequences of putative homologs

identified by the PSI-TBLASTN were then extracted from the

database in FASTA format using fastacmd (http://www.ncbi.

nlm.nih.gov/blast) for use in the final stage.

Cross-check of homology against the STRING database
Sequences of putative homologs retrieved by PSI-TBLASTN

against the metagenomic database formed the query for a

BLASTx (http://www.ncbi.nlm.nih.gov/blast) search against the

full STRING v8.2 protein database. The best-hit for each

sequence was then parsed from the output file and the associated

COG and species of the best hit was recorded. If the associated

COG of the best-hit from the STRING database matched the

COG of the original gene, the metagenomic sequence was

considered a successfully identified homolog. If the COG did not

match, the sequence was recorded as a homolog that failed the

reciprocal check. Results of the reciprocal BLAST analysis were

then outputted to a report file (Text S1). For rapid parsing of

reports, each file is headed with a summary of results (Figure 7).

Testing the performance of IHAT
The sensitivity of IHAT to identify homologs was compared to

traditional TBLASTN alignment analysis using expect-value

cutoffs, and probabilistic inference analysis using HMMER3. In

order to test the efficiency of homolog identification, a genomic

dataset was required in which the absolute number of fragments

from a particular gene was known. The MetaSim software [41]

was used to create two such datasets to test IHAT over fragments

1000 bp (typical Sanger sequencing length) and 350 bp (typical

454 GSFLX pyrosequencing length) in length respectively.

Fragments were sampled from the genome sequence of Can. ‘‘P.

ubique’’ HTCC7211. Given the error rates used by MetaSim to

simulate 454 (.3%) and Sanger (1,2%) are much higher than

reported error rates [45], the exact sampling model with default

parameters was used. The databases consisted of 29,138 and

83,251 sequences respectively to give an approximate 20-fold

coverage of the genome. The output from MetaSim was then

parsed to find the locus from which each fragment was sampled

and this was compared to the gene locus for each gene on the Can.

‘‘P. ubique’’ HTCC7211 genome. The total number of fragments

for each gene was then calculated. A fragment was counted as

sampled from a gene if it fell between the start and the end locus of

the gene. This method avoided bias caused by differential

conservation between genes at 59 and 39 ends. Comparison of

methods was carried out across 11 genes encoding for products

ranging from multi-domain proteins with regions of poor

conservation to single-copy, highly conserved housekeeping

proteins (Table 1). Two genes with no known homology in the

Can. ‘‘P. ubique’’ HTCC7211 genome were also included to test

for false positives. ppk2 encodes a protein that catalyzes the

phosphorylation of GDP to GTP using polyphosphate [69]. creC

encodes for a sensor kinase that is believed to cross-regulate the

phosphate limitation response in conjunction with PhoR [70]. For

TBLASTN alignment analysis, amino acid sequences from

Pseudomonas aeruginosa PAO1 for each of the 11 genes were used

as a query in a TBLASTN (BLAST+ v2.2.23) search of the Can.

‘‘P. ubique’’ HTCC7211 datasets at expect cutoffs of 10235,

10225, 10215 and 1025. Hits were then parsed so that each

identified homologous sequence was only included once per gene

(i.e. multiple High-scoring Segment Pairs were negated). For

Figure 7. Example output from IHAT. Each output file contains a summary header followed by a list of successfully annotated homologs,
followed by a list of sequences that failed the reciprocal BLAST against the STRING database.
doi:10.1371/journal.pone.0016499.g007
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analysis using HMMER3, each Can ‘‘P. ubique’’ HTCC7211

dataset was parsed using the orf_finder tool [45] into amino

acid sequences and then searched using hmmsearch, at default

settings with the STRING-derived HMM created by IHAT as the

query model. Hits to multiple reading frames from the same

fragment were counted as a single hit.

Calculation of GOS Effective Sequence Counts
To remove the bias of average genome size on the likelihood of

sampling a gene from a given metagenomic community, homolog

counts were rescaled using effective sequence counts, a composite

measure of sequence number and average community genome size

[44], as described by Beszteri and colleagues [47].

Supporting Information

Figure S1 (A) Non-metric Multidimensional Scaling plot of a

Bray-Curtis distance matrix of phosphate metabolism gene

abundances from GOS sites, normalized to effective sequence

counts, showing the distance between phosphate metabolism gene

profiles of hypersaline (GS033), freshwater (GS020) and pilot study

site GS000a, compared to marine sites from the main study. 2D

Stress: 0.12. (B) Dendrogram of group average agglomerative

hierarchical clustering of the Bray-curtis distance matrix from (A)

showing that GS020, GS033 and GS000a formed a distinct

cluster.

(TIF)

Figure S2 Dendrograms of cluster analysis of log(X+1) trans-

formed species abundances for (A) ppk1 and (B) ppx using a

Manhattan distance measure. Red lines represent clusters in which

members are not significantly different from each other, as

determined by a SIMPROF test (5% significance level, 999

permutations).

(TIF)

Table S1 Calculated mean and median phosphate
concentrations for each GOS site from the World Ocean
Database.

(XLS)

Text S1 Sample output file from the IHAT pipeline.

(TXT)
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