92 research outputs found

    Microbial mediation of \u27reactive\u27 nitrogen transformations in a temperate lagoon

    Get PDF
    Coastal lagoons positioned along the land margin may play an important role in removing or transforming \u27reactive\u27 nitrogen during its transport from land to the ocean. Hog Island Bay is a shallow, coastal lagoon located on the ocean-side of the Delmarva Peninsula in Virginia (USA). External nitrogen inputs are derived primarily from agriculturally enriched groundwater, and these support, in part, the high production of benthic macroalgae and microalgae as the dominant primary producers. This study focuses on processes in the water column (phytoplankton and bacterial) and in the sediments (microalgal and bacterial) responsible for transformations of dissolved inorganic and organic nitrogen (N). Sediment-water exchanges of dissolved inorganic and organic N were measured as well as sediment gross and net mineralization of organic N. Net changes in dissolved inorganic nitrogen concentrations were greater in the water-column incubations than in the incubations including sediment and water. In the water column, metabolism resulted in net uptake of NH4+ during all seasons and in net uptake of NO3- during most seasons. In the sediments, gross mineralization, which ranged from 0.9 to 6.5 mmol N m(-2) d(-1), resulted in short turnover times (\u3c 1 d) for the sediment NH4+ pool; however, sediment-water fluxes of both NH4+ and NO3- were either negligible or directed into the sediments. The NH4+ produced by gross mineralization was rapidly consumed in the dark. Biological processes potentially responsible for removal of sediment NH4+ and NO3- include coupled nitrification-denitrification, dark uptake by benthic microalgae, and immobilization by heterotrophic bacteria. In the absence of dark uptake of NH4+ by benthic microalgae, potential nitrification calculated as the difference between gross mineralization and NH4+ fluxes, would range from 1.5 to 6.4 mmol N m(-2) d(-1), similar to rates observed in a range of other systems. Similarly, potential denitrification rates estimated as the difference between calculated nitrification rates and measured NO3- fluxes would vary from 1.88 to 5.16 mol N m(-2) d(-1) and fall within the range of rates reported for similar systems. However, since calculated benthic microalgal N demand (2.51 to 16.11 mmol N m(-2) d(-1)) exceeded NH4+ release by gross mineralization at all sites and during all seasons, this suggests that dark benthic microalgal uptake was likely to be an important sink for mineralized N. Finally, sediment bacterial N immobilization may also be important given the relatively high C/N of sediment organic matter. These estimates of the potential consumptive processes for mineralized sediment N indicate that the lagoon is likely to retard and or remove \u27reactive\u27 N during its transport to the coastal ocean

    Benthic algae control sediment-water column fluxes of organic and inorganic nitrogen compounds in a temperate lagoon

    Get PDF
    Coastal lagoons are a common land-margin feature worldwide and function as an important filter for nutrients entering from the watershed. The shallow nature of lagoons leads to dominance by benthic autotrophs, which can regulate benthic-pelagic coupling. Here we demonstrate that both microalgae and macroalgae are important in controlling dissolved inorganic as well as organic nitrogen (DIN and DON) fluxes between the sediments and the water column. Fluxes of nitrogen (NH4+, NO3-, DON, urea, and dissolved free and combined amino acids [DFAA, DCAA]) and O-2 were measured from October 1998 through August 1999 in sediment cores collected from Hog Island Bay, Virginia. Cores were collected from four sites representing the range of environmental conditions across this shallow lagoon: muddy, high-nutrient and sandy, low-nutrient sites that were both dominated by benthic microalgae, and a mid-lagoon site with fine sands covered by dense macroalgal mats. Sediment-water column DON fluxes were highly variable and comparable in magnitude to DIN fluxes; fluxes of individual compounds (urea, DFAA, DCAA) often proceeded simultaneously in different directions. Where sediment metabolism was net autotrophic because of microalgal activity, TDN (total dissolved nitrogen) fluxes, mostly comprised of DIN, urea, and DFAA, were directed into the sediments. Heterotrophic sediments, including those underlying macroalgal mats, were a net source of TDN, mostly as DIN. Macroalgae intercepted sediment-water column fluxes of DIN, urea, and DFAA, which accounted for 27-75% of calculated N demand. DON uptake was important in satisfying macroalgal N demand seasonally and where DIN concentrations were low. Up to 22% of total N uptake was released to the water column as DCAA. Overall, macroalgae assimilated, transformed, and rereleased to the water column both organic and inorganic N on short (minutes-hours) and long (months) time scales. Microalgae and macroalgae clearly regulate benthic-pelagic coupling and thereby influence transformations and retention of N moving across the land-sea interface

    A Meta-Analysis of Seaweed Impacts on Seagrasses: Generalities and Knowledge Gaps

    Get PDF
    Seagrasses are important habitat-formers and ecosystem engineers that are under threat from bloom-forming seaweeds. These seaweeds have been suggested to outcompete the seagrasses, particularly when facilitated by eutrophication, causing regime shifts where green meadows and clear waters are replaced with unstable sediments, turbid waters, hypoxia, and poor habitat conditions for fishes and invertebrates. Understanding the situations under which seaweeds impact seagrasses on local patch scales can help proactive management and prevent losses at greater scales. Here, we provide a quantitative review of available published manipulative experiments (all conducted at the patch-scale), to test which attributes of seaweeds and seagrasses (e.g., their abundances, sizes, morphology, taxonomy, attachment type, or origin) influence impacts. Weighted and unweighted meta-analyses (Hedges d metric) of 59 experiments showed generally high variability in attribute-impact relationships. Our main significant findings were that (a) abundant seaweeds had stronger negative impacts on seagrasses than sparse seaweeds, (b) unattached and epiphytic seaweeds had stronger impacts than ‘rooted’ seaweeds, and (c) small seagrass species were more susceptible than larger species. Findings (a) and (c) were rather intuitive. It was more surprising that ‘rooted’ seaweeds had comparatively small impacts, particularly given that this category included the infamous invasive Caulerpa species. This result may reflect that seaweed biomass and/or shading and metabolic by-products like anoxia and sulphides could be lower for rooted seaweeds. In conclusion, our results represent simple and robust first-order generalities about seaweed impacts on seagrasses. This review also documented a limited number of primary studies. We therefore identified major knowledge gaps that need to be addressed before general predictive models on seaweed-seagrass interactions can be build, in order to effectively protect seagrass habitats from detrimental competition from seaweeds

    Nitrogen uptake and internal recycling in Zostera marina exposed to oyster farming: eelgrass potential as a natural biofilter

    Get PDF
    Oyster farming in estuaries and coastal lagoons frequently overlaps with the distribution of seagrass meadows, yet there are few studies on how this aquaculture practice affects seagrass physiology. We compared in situ nitrogen uptake and the productivity of Zostera marina shoots growing near off-bottom longlines and at a site not affected by oyster farming in San Quintin Bay, a coastal lagoon in Baja California, Mexico. We used benthic chambers to measure leaf NH4 (+) uptake capacities by pulse labeling with (NH4)-N-15 (+) and plant photosynthesis and respiration. The internal N-15 resorption/recycling was measured in shoots 2 weeks after incubations. The natural isotopic composition of eelgrass tissues and vegetative descriptors were also examined. Plants growing at the oyster farming site showed a higher leaf NH4 (+) uptake rate (33.1 mmol NH4 (+) m(-2) day(-1)) relative to those not exposed to oyster cultures (25.6 mmol NH4 (+) m(-2) day(-1)). We calculated that an eelgrass meadow of 15-16 ha (which represents only about 3-4 % of the subtidal eelgrass meadow cover in the western arm of the lagoon) can potentially incorporate the total amount of NH4 (+) excreted by oysters (similar to 5.2 x 10(6) mmol NH4 (+) day(-1)). This highlights the potential of eelgrass to act as a natural biofilter for the NH4 (+) produced by oyster farming. Shoots exposed to oysters were more efficient in re-utilizing the internal N-15 into the growth of new leaf tissues or to translocate it to belowground tissues. Photosynthetic rates were greater in shoots exposed to oysters, which is consistent with higher NH4 (+) uptake and less negative delta C-13 values. Vegetative production (shoot size, leaf growth) was also higher in these shoots. Aboveground/belowground biomass ratio was lower in eelgrass beds not directly influenced by oyster farms, likely related to the higher investment in belowground biomass to incorporate sedimentary nutrients

    Interaction between Ammonium Toxicity and Green Tide Development Over Seagrass Meadows:A Laboratory Study

    Get PDF
    Eutrophication affects seagrasses negatively by increasing light attenuation through stimulation of biomass of fast-growing, bloom-forming algae and because high concentrations of ammonium in the water can be toxic to higher plants. We hypothesized nevertheless, that moderate amounts of nitrophilic macroalgae that coexists with seagrasses under eutrophic conditions, can alleviate the harmful effects of eutrophication on seagrasses by reducing ammonium concentrations in the seawater to non-toxic levels because such algae have a very large capacity to take up inorganic nutrients. We studied therefore how combinations of different ammonium concentrations (0, 25 and 50 μM) and different standing stocks of macroalgae (i.e. 0, 1 and 6 layers of Ulva sp.) affected survival, growth and net production of the seagrass Zostera noltei. In the absence of Ulva sp., increasing ammonium concentrations had a negative influence on the performance of Z. noltei. The presence of Ulva sp. without ammonium supply had a similar, but slightly smaller, negative effect on seagrass fitness due to light attenuation. When ammonium enrichment was combined with presence of Ulva sp., Ulva sp. ameliorated some of negative effects caused by high ammonium availability although Ulva sp. lowered the availability of light. Benthic microalgae, which increased in biomass during the experiment, seemed to play a similar role as Ulva sp.--they contributed to remove ammonium from the water, and thus, aided to keep the ammonium concentrations experienced by Z. noltei at relatively non-toxic levels. Our findings show that moderate amounts of drift macroalgae, eventually combined with increasing stocks of benthic microalgae, may aid seagrasses to alleviate toxic effects of ammonium under eutrophic conditions, which highlights the importance of high functional diversity for ecosystem resistance to anthropogenic disturbance

    Tidal and groundwater fluxes to a shallow, microtidal estuary : constraining inputs through field observations and hydrodynamic modeling

    Get PDF
    This paper is not subject to U.S. copyright. The definitive version was published in Estuaries and Coasts 35 (2012): 1285-1298, doi:10.1007/s12237-012-9515-x.Increased nutrient loading to estuaries has led to eutrophication, degraded water quality, and ecological transformations. Quantifying nutrient loads in systems with significant groundwater input can be difficult due to the challenge of measuring groundwater fluxes. We quantified tidal and freshwater fluxes over an 8-week period at the entrance of West Falmouth Harbor, Massachusetts, a eutrophic, groundwater-fed estuary. Fluxes were estimated from velocity and salinity measurements and a total exchange flow (TEF) methodology. Intermittent cross-sectional measurements of velocity and salinity were used to convert point measurements to cross-sectionally averaged values over the entire deployment (index relationships). The estimated mean freshwater flux (0.19 m3/s) for the 8-week period was mainly due to groundwater input (0.21 m3/s) with contributions from precipitation to the estuary surface (0.026 m3/s) and removal by evaporation (0.048 m3/s). Spring–neap variations in freshwater export that appeared in shorter-term averages were mostly artifacts of the index relationships. Hydrodynamic modeling with steady groundwater input demonstrated that while the TEF methodology resolves the freshwater flux signal, calibration of the index– salinity relationships during spring tide conditions only was responsible for most of the spring–neap signal. The mean freshwater flux over the entire period estimated from the combination of the index-velocity, index–salinity, and TEF calculations were consistent with the model, suggesting that this methodology is a reliable way of estimating freshwater fluxes in the estuary over timescales greater than the spring– neap cycle. Combining this type of field campaign with hydrodynamic modeling provides guidance for estimating both magnitude of groundwater input and estuarine storage of freshwater and sets the stage for robust estimation of the nutrient load in groundwater.Funding was provided by the USGS Coastal and Marine Geology Program and by National Science Foundation Award #0420575 from the Biocomplexity/Coupled Biogeochemical Cycles Program

    Nutrient Enrichment and Food Web Composition Affect Ecosystem Metabolism in an Experimental Seagrass Habitat

    Get PDF
    Food web composition and resource levels can influence ecosystem properties such as productivity and elemental cycles. In particular, herbivores occupy a central place in food webs as the species richness and composition of this trophic level may simultaneously influence the transmission of resource and predator effects to higher and lower trophic levels, respectively. Yet, these interactions are poorly understood.Using an experimental seagrass mesocosm system, we factorially manipulated water column nutrient concentrations, food chain length, and diversity of crustacean grazers to address two questions: (1) Does food web composition modulate the effects of nutrient enrichment on plant and grazer biomasses and stoichiometry? (2) Do ecosystem fluxes of dissolved oxygen and nutrients more closely reflect above-ground biomass and community structure or sediment processes? Nutrient enrichment and grazer presence generally had strong effects on biomass accumulation, stoichiometry, and ecosystem fluxes, whereas predator effects were weaker or absent. Nutrient enrichment had little effect on producer biomass or net ecosystem production but strongly increased seagrass nutrient content, ecosystem flux rates, and grazer secondary production, suggesting that enhanced production was efficiently transferred from producers to herbivores. Gross ecosystem production (oxygen evolution) correlated positively with above-ground plant biomass, whereas inorganic nutrient fluxes were unrelated to plant or grazer biomasses, suggesting dominance by sediment microbial processes. Finally, grazer richness significantly stabilized ecosystem processes, as predators decreased ecosystem production and respiration only in the zero- and one- species grazer treatments.Overall, our results indicate that consumer presence and species composition strongly influence ecosystem responses to nutrient enrichment, and that increasing herbivore diversity can stabilize ecosystem flux rates in the face of perturbations

    Nitrogen fixation in restored eelgrass meadows

    No full text
    • …
    corecore